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We thank Bruno Ferman (BF), Marcelo Medeiros (MM), Yuya Sasaki (YS), and Kaspar Wüthrich
(KW) for their constructive comments on our paper. Below are some further thoughts.

1 On the Interpretation of pup

The discussants offered alternative interpretations of pup. As we noted, pup-like alternatives are
already available in the literature. Assuming that the covariate space is small relative to the
sample size, our derivations in Section 4 provide a formal justification for exploiting residuals of
other series as predictors. This is similar to the implementation of farmtreat considered in Fan
et al. (2022) developed to accommodate heterogeneity and high-dimension covariates in estimation.
But while farmtreat is motivated as a variable selection procedure in a high dimension setting,
we motivated it from the viewpoint of optimal prediction when the number of predictors is fixed.
We thank MM for providing new simulations to reinforce the usefulness of pup in other settings.
Also mentioned is ArCo of Carvalho et al. (2018) which delivers a time averaged treatment effect
over the post-intervention sample. We have primarily focused on the building block of the average,
which is the treatment effect for unit i at a given T0 + h.

KW shows that if selection into treatment is based on past shocks with Di = 1(ei,T0 < 0), the pup
term ρei,T0 will correct for selection bias in a standard prediction if eit is correctly specified to be
an AR(1). We thank KW for this simple and convincing interpretation.

It is well known that a Difference-in-Difference regression identifies the average treatment effect δ
under a parallel trend assumption. If the dynamics are correctly specified, then a Lagged Dependent
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Variable (LDV) model can also identify δ. YS first notes that the pup regression Yi,T0+h =
αi + λT0+h + δDi,T0+h + ρhYi,T0+h + eiy,T0+h+error nests DiD and LDV as special cases, and then
points out that pup can estimate δ without imposing the identifying assumptions required of DiD
or LDV. In this regard, pup is doubly robust. This is an insightful observation, though it would
be prudent to qualify that robustness is limited to the two nested models, and it is possible that
the true model is neither DiD or LDV.

Hsiao et al. (2012) remarked that a vector-autoregressive model (VAR) can be used for what we
refer to as M(·). This motivates MM to note that pup is closely related to a VAR. This is true to
the extent that both take dynamics into account. By the same argument that a LDV can identify
δ, a VAR (which is a multivariate LDV) will also identify δ if the dynamics are correctly specified.
But when the VAR is not correctly specified such as when M∗ is a VARMA, there is still a role for
pup.

BF draws attention to the fact that the error term is specific to the model being analyzed, and thus
to the assumptions underlying the choice of the conditional mean model M(β;H) used to estimate
mit. We cannot agree with this more because by construction, eit = Yit(0) − mit is defined from
mit. A ‘model’ depends not only on the form of M(·), but also the conditioning information H
which is necessarily context dependent. In a time series setting, a natural definition of H is the
history of the dependent variable Y and its covariates X as of T0, which we may denote by HT0 .
We prefer to define HT0 in terms of e since it is spanned by Y and X, but is more parsimonious
if there are many X’s. However, in the treatment effect setting considered in Section 4, we have
data not just for the treated up to T0, but also the post-treatment outcomes of the control group.
It is inappropriate in this case to index H by T0. Failing to find a satisfactory notation, we opted
to simply write H. We note, however, that H should only include observables or functions of them
used in estimation and imputation, for if excluded variables were helpful, they should have been
used in the first place.

2 On Misspecified Models

The discussants raised several aspects of misspecification that are of interest. Suppose for simplicity
that the treated unit is i = 1 and recall that we view M(·;H) as the ‘pseudo-true’ mean conditional
on information H but that it may not coincide with the true M∗. If m1t generated by M coincides
with m∗

1t generated by M∗, the error e1t = Y1t(0) −m1t should not be predictable. KW and YS
consider settings when M(·;H) is specified such that E[e1t|H] ̸= 0 even though E[e1t] = 0, and in
both cases, pup improves prediction. In a sense, pup improves upon M(·; ) by adding an estimate
of E[e1t|H] to m1t. pup has a control function flavor, but re-estimation is not involved.

Another type of misspecification concerns the model for e1t used to generate the pup correction
for a given choice of M(·;H). Now the premise of pup is not to find the correct model for e1t, but
rather to have a ‘good enough’ model that would mop up its predictability as much as possible.
After all, quoting the statistician George Box, ‘all models are wrong, but some models are more
useful’. Whether the AR(1) model is useful in this context depends on the predictability that
remains in ê+1,T0+1 = ê1,T0+1 − ρ̂1ê1,T0 . This can be checked by studying the correlogram of ê+1t.
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With some data snooping, prediction error can be further reduced by adjusting the model for ê1t.

An anonymous referee asked about the merits of a correction based on a model richer than the simple
AR(1) that we focused in the paper. Unfortunately, even if we take minimizing prediction mean-
squared error as our goal, we were unable to obtain precise results for an AR(2) prediction. The
main reason is that the variance of pup becomes a complicated expression of the autocorrelation
coefficients of e1t. A good reference is Kunitomo and Yamamoto (1985), who derive the prediction
mean square error for misspecified AR(p) models when the true DGP is AR(m) with m ≥ p. As
their Theorem 3 and Corollary 5 make clear, this variance is very involved even if we abstract from
estimation uncertainty.

A more delicate issue is that while prediction mean-squared error will be smaller than that of
the standard prediction even when the model for e1t is not correctly specified as Lemma 1 shows,
precise statements cannot be made for coverage. To see why, assume that e1,T0+1

d∼N(0, σ2
e,1). The

standard prediction (i.e. without the pup correction) has conditional coverage probability

Φ

(
bias1 + bias2z1−α/2

)
− Φ

(
bias1 − bias2z1−α/2

)
̸= 1− α

as T0 → ∞. Distorted inference can arise because of a location (bias1), a shift (bias2) in the
quantiles, or because the normality assumption is incorrect. We focused in the paper on bias1 and
bias2 and showed that in the AR(1) case, bias1 = − ϕ1

σv,1
e1,T0 and bias2 =

σe,1

σv,1
. In contrast, a pup

prediction interval [
δ̂1T0+1 − ρ̂1ê1,T0 − σ̂δ1z1−α/2, δ̂1T0+1 − ρ̂1ê1,T0 + σ̂δ1z1−α/2

]
(1)

will have the correct coverage asymptotically if e1t is a Gaussian AR(1) model as assumed. Note
that σ̂δ1 is a consistent estimator of the standard error of the conditional distribution of e1,T0+1 −
E[e1,T0+1|H] given H, which is equal to σv,1 under the AR(1) model. Furthermore,

e1,T0+1−ρ1e1,T0
σv,1

∼
N(0, 1) by the assumption of normality and the AR(1) specification for e1t, and z1−α/2 is approxi-
mately 2. However, if e1t is not an AR(1), bias1 will not be zero and bias2 will not be 1. Even if
e1,T0 is truly Gaussian, the implications of the two biases for inference are unclear.

BF’s concern is that pup inference will still be distorted when the model for e1t is misspecified. To
guard against misspecification, BF suggests an inference procedure that can yield misspecification
robust intervals for δ1. His procedure relies on an ingenious use of bounds on the misspecification
bias for the conditional mean of e1,T0+1 given H, and avoids a distributional assumption on e1t by
using quantiles of the empirical distribution of the estimated residuals ê1t. When applied to the
standard estimator δ̂1 for which ê1t = ê+1t, this procedure can eliminate the two types of bias (bias1
and bias2) discussed above, as we now explain. Let F̂ be the empirical cdf of ê1t at level α and
QF̂ (α) be the corresponding quantile function. Note that under Gaussianity of e1t, this quantile is
asymptotically equivalent to QF̂ (α) = σ̂e,1zα. A standard 100(1− α)% level prediction interval for
δ1,T0+1 is [

δ̂1,T0+1 −QF̂ (1− α/2), δ̂1,T0+1 −QF̂ (α/2)

]
.

The conditional coverage probability of this interval, given H, is equal to

P
(
QF̂ (α/2) ≤ e1,T0+1 ≤ QF̂ (1− α/2)|H

)
,
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which is different from 1− α for the two main reasons discussed above (bias1 and bias2).

The premise of BF is the existence of a worst case bias ∆ ≥ 0 such that |E[e1,T0+1|H]| ≤ ∆ almost
surely. Letting Q∗(α) denote the α-quantile of e1,t−E[e1,T0+1|H], a conditionally valid interval for
δ1,T0+1 is given by [

δ̂1,T0+1 −∆−Q∗(1− α/2), δ̂1,T0+1 +∆−Q∗(α/2)

]
.

Although valid conditionally, this interval is infeasible because it depends on Q∗(α/2) and Q∗(1−
α/2), the quantiles of the conditional distribution of e1,t −E[e1,T0+1|H]. To obtain a conditionally
valid interval that is robust to misspecification of the conditional mean E[e1,T0+1|H], BF relies on
the fact that QF̂ (u)−∆ ≤ Q∗(u) ≤ QF̂ (u) +∆ for any u ∈ (0, 1). The proposed level 100(1−α)%
conditional prediction interval for δ1,T0+1 is thus[

δ̂1,T0+1 − 2∆−QF̂ (1− α/2), δ̂1,T0+1 + 2∆−QF̂ (α/2)

]
.

This interval bears some resemblance to our pup prediction interval given in (1) as both control
for bias1. Whereas pup removes −ρ̂1ê1,T0 from both end points of the interval, which is the right
centering for the AR(1) model, the BF interval adds and subtracts the bound ∆ to adjust for the
location bias. The cost of robustness is that when the AR(1) model is correctly specified, using ±∆
increases the length of the interval. This effect is amplified by the fact that to correct for bias2, the
BF interval multiplies ∆ by 2. It remains to be seen whether robustness can justify the possible
loss in power due to a wider prediction interval.

pup can be used in conjunction with any asymptotically unbiased estimator of M(·), and many
such estimators are available. A question of interest is whether we can test if the different predictions
are equal. For the sake of discussion, suppose that we have two predictions A and B for YT0+h. In
the forecasting exercises when YT0+h is eventually observed, a simple test is suggested in Diebold
and Mariano (1995). For a given loss function g(·) and out-of-sample forecast errors {eA} and {eB},
it holds that E[g(eAT0+1:T0+h)− g(eBT0+1:T0+h)] = 0 under the null hypothesis of equal predictability.
Since YT0+1:T0+h is observed, the Diebold-Mariano test amounts to evaluating if the sample average
of g(êAT0+1:T0+h) − g(êBT0+1:T0+h) is zero. This test is, however, not feasible in the treatment effect
setting because YT0+h(0) is not observed for any h > 0, making this extension challenging. However,
if A is the standard prediction and B is pup we can in principle do an an LM test as suggested in
the paper. The size and power of such a test remains to be explored.
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