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Abstract. We review developments in conducting inference for model parameters

in the presence of intertemporal and cross-sectional dependence with an emphasis

on panel data applications. We review the use of heteroscedasticity and autocorrela-

tion consistent (HAC) standard error estimators, which include the standard clustered

and multi-way clustered estimators, and discuss alternative sample-splitting inference

procedures, such as the Fama-Macbeth procedure, within this context. We outline

pros and cons of the different procedures. We then illustrate the properties of the

discussed procedures within a simulation experiment designed to mimic the type of

firm-level panel data that might be encountered in accounting and finance applica-

tions. Our conclusion, based on theoretical properties and simulation performance,

is that sample-splitting procedures with suitably chosen splits are the most likely to

deliver robust inferential statements with approximately correct coverage properties

in the types of large, heterogeneous panels many researchers are likely to face.
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1. Introduction

Empirical research in accounting and finance often uses panel data on firms, sec-

tors, or regions over time. It is routine for such data to be interrelated. In particular,

unobservable factors (“shocks”) are typically important in determining outcomes and

seem likely to be related across observations. Time series shocks affecting an indi-

vidual firm or geographic region are often taken to be serially correlated. Similarly,

shocks at a single point in time affecting different observations may be correlated with

each other. As examples, supply shocks may jointly impact all firms in industries

with similar technology, and shocks to interest rate expectations may jointly impact

firms with similar exposure to interest rate risk. Moreover, such shocks are likely to

be correlated across firms at different time periods. For example, firms with similar

investment opportunities will tend to make similar choices and experience correlated

shocks. Furthermore, with multi-period investments, such firms will routinely exhibit

correlation across nearby time periods, not just contemporaneously.1

It is well-known that researchers need to account for the presence of dependent un-

observables when conducting statistical inference for model parameters. For example,

a 5% level test formed from a t-statistic with standard error that is estimated as-

suming independence across observations can have size - the probability of rejecting

a true null hypothesis - very far from 5% when the data are in fact dependent. This

potential for distortions to inferential statements from failing to properly account for

dependence has long been recognized in the time series literature. In the empirical

economics literature, Bertrand et al. (2004) highlighted this point in the context of

panel data with cross-sectional independence and intertemporal correlation; and ca-

sual empiricism based on papers appearing after Bertrand et al. (2004) suggests that

applied researchers dealing with panel data are now acutely aware of the potential for

distortions from failing to account for dependence when conducting inference. Indeed,

the vast majority of applied work with panel data in accounting, finance, and eco-

nomics uses inference procedures that are robust to some form of correlation across

observations.

1We highlight that this intuitive structure leads to correlation across different firms in different

time periods and would render the common practice of using two-way clustering by firm and time

inappropriate, as this two-way clustering structure imposes that different firms in different time periods

are uncorrelated.
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The importance of adequately accounting for dependence, both inter-temporal and

cross-sectional, has led to the development of a variety of statistical procedures that

aim to deliver valid inferential statements about parameters of interest when data may

be dependent and heterogeneous. These methods include the use of clustered standard

error estimators, sample-splitting procedures such as the Fama-Macbeth procedure,

and bootstrap procedures. While the menu of available methods offers researchers

many high-quality options, the methods are not equivalent and involve substantive

choices. For example, when using clustered standard errors, the obvious decision that

must be made is at what level to form clusters. There are also less obvious choices

such as what critical values to use and what fixed effects structure to maintain that

have important impacts on the quality of inference.

The goal of this review is to offer a heuristic overview of leading inferential approaches

with dependent data and a practical guide to some of the trade-offs between methods

and choices that must be made. In addition to reviewing different broad classes of

methods, we talk about practical issues that are common to all approaches and often

ignored in the literature. Two particularly important issues are the choice of group

structure, e.g. on what level(s) to cluster for one- or multi-way clustering, and how the

choice of the group structure interacts with fixed effects structures.

The practical recommendations we make are based on a simulation study that was

designed to allow an evaluation of alternative procedures in a typical accounting or

finance application. Importantly, our simulation model is not based on a stylized

model with simple dependence structure. Rather, we base the simulation on the em-

pirical analysis in Balakrishnan et al. (2014) and use a data generating process that

is heterogeneous, allows for dependence along multiple dimensions, and is designed

to approximate the correlation structure that is present in the data. Our simulation

results should therefore be empirically relevant for accounting and corporate finance

applications.

Main Results. We evaluate alternative inference procedures in the context of a

simple panel-data regression estimated by ordinary least squares (OLS) under strict

exogeneity of regressors so there are no finite sample bias concerns. To summarize

the main points from our simulation, we conclude that sample-splitting strategies (e.g.

Fama-MacBeth) with a small number (e.g. 5-10) of groups that each consist of many
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observations are likely to yield the most reliable inferential statements in many ac-

counting and finance applications. The use of a small number of large groups allows

one to accommodate very rich dependence structures and the use of sample-splitting

allows one to accommodate very heterogeneous data. Having many observations per

group is also important for sample-splitting estimators as they require estimation of

model parameters within each group, and these group-level estimates may be very

unstable if the groups have few observations.

Our recommendation to use sample-splitting approaches, as opposed to using clus-

tered standard errors, and a small number of groups may be surprising to some readers.

Using a small number of large groups results in inconsistent estimates of standard er-

rors and differs from the folk recommendation, motivated by approximations that rely

on consistent standard estimation, to use at least a modest number (e.g 30-40 or more)

of groups. Our recommendation is in line with a key contribution of the recent theoret-

ical literature, outlined below, that highlights that consistent estimation of standard

errors is not necessary to obtain high-quality inference and that inferential perfor-

mance tends to be much more robust when a small number of groups is used. The use

of sample-splitting strategies versus clustering is motivated by the fact that inference

using clustered standard errors with few, large clusters relies on homogeneity condi-

tions across clusters that seem unlikely to be satisfied in firm-level panels. In contrast,

sample-splitting strategies do not require these homogeneity conditions.2

The simulation evidence also suggests that it is important that fixed effects estimated

with a small number of observations do not cross group boundaries as the estimation of

fixed effects using observations from multiple clusters results in mechanical correlation

across the clusters. Rather, fixed effects should ideally be nested within any clustering

structure. A nice by-product of sample-splitting strategies is that they mechanically

keep any fixed effects structure nested within the structure used to split the sample.

2The discussion becomes more nuanced in scenarios where finite sample bias is a key concern.

Key examples where finite sample bias may be prominent are instrumental variables estimation and

estimation in fixed effects panels including lagged dependent variables. In such cases, the performance

of the point estimator resulting from sample splitting deteriorates due to the presence of bias and

there is a tradeoff between bias of the point estimator and robustness of inference to heterogeneity.

We briefly comment further on these issues in Section 3.3.
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Outline. In the remainder of this introductory section, we provide a high-level

overview of inferential approaches and a literature review. We outline the basic problem

of inference with dependent data in a simplified setting with heuristic derivations that

allows us to convey the key theoretical insights without dwelling on technical details in

Section 2. In Section 3, we then provide a discussion of leading inferential approaches.

Our discussion is informal and meant to allow us to provide some intuition into the

functioning of the procedures along with providing a venue to outline their pros and

cons. Finally, we present our simulation results along with detailed discussion of the

performance of the different procedures and key practical takeaways in Section 4. While

presenting the simulation results in Section 4, we also comment on many practical

implementation details for the different methods. The main results, summarized above,

are elaborated on in a concluding section.

Literature Review and Overview. We consider four basic approaches to es-

timation and inference in this review. First, we consider traditional large sample

approximations that use the full sample to estimate the parameters of interest and

use heteroskedasticity and autocorrelation consistent (HAC) estimators, which include

one- and multi-way clustering as special cases, to estimate the standard errors associ-

ated with these parameters. These traditional approximations maintain the classical

assumption that the standard error estimators are extremely accurate (consistent).

Second, we turn to recent alternative approximations that modify the traditional ap-

proach by considering estimators of standard errors that are not assumed to be con-

sistent. Approximations that do not rely on consistent standard error estimators but

instead directly account for uncertainty in standard error estimates have the potential

to improve inference in applications with firm-level panel data where it is difficult to

estimate standard errors. We then turn to a third approach which adapts the sample-

splitting approach of Fama and MacBeth (1973). Finally, we examine the performance

of bootstrap-based inference.

Probably the most popular method for performing inference allowing for dependent

and heterogeneous observations in practice is to use so-called robust standard error

estimators coupled with conventional test statistics. These methods were popularized

in economic applications by White (1980), which presented a standard error estimator

robust to heteroskedasticity under the assumption of independence across observations;

see also Eicker (1967) and Huber (1967). These methods have then been adapted to
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handle a variety of different dependence structures. See, for example, Levine (1983),

White and Domowitz (1984), Newey and West (1987), and Andrews (1991) for time

series dependence; Liang and Zeger (1986), Arellano (1987), and Bertrand et al. (2004)

for panel data with dependence within the panel unit of observation but indepen-

dence across units of observation;3 Cameron et al. (2011) for clustering along multiple

dimensions; and Conley (1999) and Kelejian and Prucha (2007) for cross-sectional de-

pendence. We refer to the general class of robust standard error estimators as HAC

estimators for simplicity.

An alternative for estimating the standard error of an estimator is to adopt a sample-

splitting approach. This method splits the data into a set of G subsamples and then

estimates the model of interest within each subsample. Thus, one obtains a set of G es-

timates of any parameter of interest, one from each subsample. These G estimates are

then treated as G independent observations. The final point estimate for a parameter

is obtained simply as the average of its G within-subsample estimates, and its standard

error corresponds to the usual standard error of a sample mean estimated from G inde-

pendent observations. A special case of this method is the approach taken in Fama and

MacBeth (1973). We will refer to these and related procedures as “sample-splitting” or

Fama-MacBeth approaches (FM hereafter) in honor of the fundamental contribution

and insight of Fama and MacBeth (1973). We wish to highlight that our usage of this

term is far more general than that often associated with the procedure of Fama and

MacBeth (1973) which involves estimating a model within each time period and then

proceeding with inference using the resulting time series of estimated coefficients. We

are rather using FM to denote any procedure which subsets the data and estimates

an appropriate model within subsets. For example, our ultimate recommendation will

be to perform FM-style inference using a small number of subsets which are large

enough to accommodate any relevant fixed effects structure and capture rich forms of

intertemporal and cross-sectional dependence. We refer to the procedure resulting from

this recommendation as FM, though implementing this recommendation will generally

involve forming subsets consisting of multiple time periods and cross-sectional units

which differs in detail from the original implementation in Fama and MacBeth (1973).

3This structure corresponds to the so-called “clustered” standard error estimators where the panel

unit of observation denotes a cluster and observations within cluster are allowed to be essentially

arbitrarily correlated.
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A common feature of early HAC papers is that they rely on an approximation that

leverages being able to consistently estimate the sampling variance matrix of the pa-

rameter estimator. Inference relies on an argument that essentially starts by approxi-

mating the behavior of an inference procedure, e.g. a hypothesis test, when the true

sampling variance of the estimator of the parameter of interest is known. The next step

is to show that, due to consistency, the estimated sampling variance will be arbitrarily

close to the true sampling variance in a large enough sample. Typically, consistency of

standard error estimators allowing for dependence will require strong conditions. For

example, multi-way clustering estimators are only consistent if the smallest number

of groups along any of the dimensions which clustering occurs is large, which may be

hard to satisfy in many common uses in accounting and finance where clustering may

be by firm and time and the time dimension is relatively short.

While simple, basing inference on approximations that take the estimated standard

errors to be arbitrarily close to the true standard errors ignores the fact that standard

errors themselves are estimated quantities that are not exactly equal to the true stan-

dard errors. In finite samples, estimated standard errors exhibit sampling variability

themselves and potentially suffer from bias. The variability in standard errors is es-

pecially important in dependent data settings where accounting for dependence leads

to additional sampling variability that may be large even in big data sets. Failing

to account for this variability in estimating standard errors then potentially results in

poor performance of standard inference procedures as evidenced, for example, in Kiefer

and Vogelsang (2002, 2005). Within the finance and accounting literature, Petersen

(2009) and Gow et al. (2010) provide excellent reviews focused on comparing different

variants of HAC and FM approaches within this classical setting.

To address the drawbacks of relying on consistent standard error estimators, the re-

cent theoretical literature on inference for dependent data in econometrics and statistics

has turned to providing inference procedures that explicitly account for sampling un-

certainty in standard error estimators. These approaches are focused on using standard

test statistics (e.g. Student t statistics) but providing alternative reference distribu-

tions4 to account for the sampling variation in the estimated standard errors. These

4The reference distribution is the distribution that characterizes the behavior of the statistic under

the null hypothesis and is used, for example, for obtaining critical values that control the size of the

test at the desired level.
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alternative reference distributions tend to have critical values that are larger than

those for conventional reference distributions. Effectively, these larger critical values

account for the additional uncertainty due to sampling variation in the standard error

estimator.

A popular approach for accounting for uncertainty in standard error estimation

within the HAC framework was pioneered in Kiefer and Vogelsang (2002, 2005) and

Vogelsang (2003) for data with time series dependence. Kiefer and Vogelsang (2002,

2005) and Vogelsang (2003) provide a limiting distribution for commonly-used test

statistics with an approximation that treats standard error estimators as inconsistent

in the sense that they are approximately unbiased but have variance that does not

vanish even in very large samples. This approach thus explicitly approximates the

finite-sample situation where the sampling variability in estimating the standard er-

ror is not vanishingly small, which seems to capture many real-world scenarios. This

work has been extended to panel data with independent units of observation in Hansen

(2007), to cross-sectionally dependent data in Bester et al. (2016), and to panels with

intertemporal and cross-sectional correlation in Vogelsang (2012) and Bester et al.

(2011).

Similar results which do not rely on consistent standard error estimation are pro-

vided for sample splitting procedures in Ibragimov and Müller (2010, 2016) and Canay

et al. (2017). The primary benefit of FM methods relative to inference based on HAC

estimators in settings where noise in estimating standard errors is important is that

good performance of HAC-based inference has been shown only under conditions that

strongly restrict heterogeneity across observations and that are unnecessary for FM

methods.5 This robustness to heterogeneity is an important advantage in our example

given the substantial heterogeneity across observations in the firm-level panel data that

we use in our simulation.

We wish to emphasize that a key insight from this theoretical work is that it is not

necessary to have consistent estimators of standard errors to conduct inference. Rather

two conditions are sufficient. First, an inferential procedure needs to adequately accom-

modate the dependence that is actually in the data. Accommodating rich dependence

structures, such as those one might anticipate in firm level panel data, in estimating

5The costs of this robustness to heterogeneity are discussed in Section 3.3.
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standard errors will tend to result in highly variable standard error estimators. A

second ingredient is then making use of an approximation for a statistic’s sampling

distribution that accounts for this variability in the standard error estimator. Impor-

tantly, the reference distributions for such approximations will not, in general, be usual

distributions such as the standard normal. Much of the remainder of the paper is spent

on elaborating on these two points.

The aforementioned approaches rely on analytically approximating the behavior of

a statistic to obtain inferential statements. The bootstrap offers an alternative that

replaces analytic approximation with simulation. The main idea underlying the boot-

strap is to obtain a sampling distribution for a statistic of interest by approximating

the distribution of the data itself. Typically, simulation methods are used to construct

many samples of bootstrap data that each have approximately the same distribution

as the original data. The empirical distribution of simulated statistics corresponding

to these bootstrap data is then used to approximate the sampling distribution of the

statistic computed from the original data. Thus, the bootstrap avoids the need for

asymptotic approximations for statistics and may capture variability in the standard

error component of commonly used statistics.

Generally, bootstrap inference works well when the bootstrap data have approxi-

mately the same dependence structure that exists in the true data. Replicating this

structure is complicated in data exhibiting dependence over time and across space.

We consider two different mechanisms for generating bootstrap data that have been

proposed in this setting. We apply the overlapping blocks bootstrap, e.g. Künsch

(1989) and Liu and Singh (1992), by treating the panel as a vector time series and

treating each cross-section as an observation from this time series. This structure al-

lows for very general cross-sectional correlation but may suffer due to the relatively

short time series in many panel data sets. We also consider the cluster wild bootstrap,

e.g. Cameron et al. (2008) and Mackinnon and Webb (2016), for several different def-

initions of clusters. This approach captures dependence within clusters but imposes

approximate independence across clusters.
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2. Basic Statistical Problem

Typical statistical methods involve averages across sample observations and the vari-

ability in these averages needs to be accounted for in order to make good inferences. As

a simple example that captures the main ideas, consider the problem of estimating a

population mean, µ, given data that consist of observations yit that are noisy measures

of µ from many firms, N , and time periods T . The statistical model is then simply

yit = µ+ ηit (1)

where the ηit are mean zero but may be correlated across firms and/or time periods.

A natural estimator of µ is the sample average of the yit, ȳ:

ȳ =
1

NT

∑
i,t

yit = µ+
1

NT

∑
i,t

ηit. (2)

The variance of ȳ, VNT , is equal to the variance of 1
NT

∑
i,t ηit, where

VNT =
1

(NT )2

∑
i,t

Var(ηit) +
∑
i,t

∑
(j,s)6=(i,t)

Cov(ηit, ηjs)

 . (3)

by a standard calculation. Thus VNT depends in general on not just the variances of the

ηit but also on all the covariances between them. Note that the first summation in (3),

which accounts for the contribution of the variances to the sampling variability of the

sample mean, depends on NT elements while the second summation, which provides

the contribution of covariances to the sampling variability of the sample mean, is a

sum of (NT )2−NT terms. Even when these covariances are each small, their sum can

still account for a large portion of the variance of the sample mean estimator, VNT ,

due to the large number of covariances in (3).

We focus on applications where it is reasonable to assume the estimator of the pa-

rameter of interest, ȳ in this example, is consistent and
√
NT -asymptotically normal.6

Such an approximation will typically rely on a notion of weak dependence between

observations. By weakly dependent, we mean that correlations between observations

decay relatively quickly as one considers observations farther apart in time or in the

cross section. This decay will allow the use of usual asymptotic approximations which

require correlations across observations to shrink fast enough with a notion of economic

6Note that by
√
NT -asymptotically normal, we mean that

√
NT (ȳ−µ) has a limiting distribution

that is normal.
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or time distance, so that 1
NT

∑
i,t

∑
(j,s)6=(i,t) Cov(ηit, ηjs)→ c with |c| <∞. Under weak

dependence, the sampling distribution of ȳ will then be approximately N(µ, V0/(NT ))

where VNT → V0.

Weak dependence may not be appropriate for all applications of course; for example,

weak dependence will not hold in data with trends or random-walk-like behavior. We

feel that dealing with such structures would take us too far afield and add little to

understanding the key issues regarding inference with dependent data. We note that

weak dependence is a reasonably general structure and that often in applications weak

dependence will only need to hold after sensible data transformations are used to

remove trends from data. Further, most linear panel models include firm and time

fixed effects, so weak dependence need hold only after removing an arbitrary common

trend and any time-invariant firm-level heterogeneity. Finally, one could allow many

types of strong dependence without substantively changing the main features of the

discussion beyond adding technical complication.

Maintaining the assumption of weak dependence, we now turn to inference. For

simplicity, we consider the case where interest is in testing a simple null hypothesis of

the form H0 : µ = µ0 for some number µ0. Under this hypothesis and assuming that

we know V0, we can form a t-statistic, t1, as

t1 =

√
NT (ȳ − µ0)√

V0
.

Using the asymptotic normality of ȳ, we can approximate the distribution of the test-

statistic using t1
approx∼ N(0, 1) under the null hypothesis. V0 is, of course, unknown

in practice, so it must be estimated from the data to make this approximation use-

ful. Estimating V0 or obtaining some other way to benchmark sampling uncertainty

under dependence poses complications. Providing insight into these complications and

outlining solutions is the focus of the remainder of this review.

3. Inference Approaches

In the following, we outline four key basic approaches to estimation and inference,

including a heuristic discussion of their theoretical underpinnings and mathematical

motivation. We highlight practical distinctions in Section 4.
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3.1. Inference Based on Consistent HAC Estimation. Typical large sample in-

ference scales the statistic t1 using an estimator of V0 that is assumed to be consistent,

call it V̂c. Plugging this estimator in when forming the t-statistic for testing the null

hypothesis that µ = µ0 yields

t =

√
NT (ȳ − µ0)√

V̂c

approx∼
√
V0N(0, 1)√

V̂c
. (4)

Assuming V̂c is a consistent estimator of V0, we then have that the ratio
√
V0√
V̂c

may be

taken to be arbitrarily close to one with high probability in large enough samples. Thus,

we have that the t-statistic approximately follows a standard normal distribution in

this setting. In practice, this approximation will only work well when V̂c is an extremely

accurate estimator of V0 so that approximating the ratio
√
V0√
V̂c

by one has little impact

on the behavior of the t-statistic. Such an approximation essentially relies on having

an estimator of V0 that has little bias and little sampling variability in finite samples.

In terms of estimating V0, we focus on estimators that can be written using residuals

η̂it = yit − ȳ as

V̂NT =
1

NT

∑
i,t

∑
j,s

W (it, js)η̂itη̂js. (5)

The term W (it, js) in (5) is a weight on the pair of residuals from observations it and

js. We require that this weight is one when both indexes are the same, W (it, it) =

1. For distinct observations it and js, nonzero weights allow for a contribution of

the corresponding covariance term, i.e. Cov(ηit, ηjs), to the estimator. This type of

estimator is commonly referred to as a HAC (heteroskedasticity and autocorrelation

consistent) estimator.

The weights used in a HAC estimator play a crucial rule in controlling the types of

dependence that are allowed to influence the estimator of V0. If all weights are set equal

to zero when it 6= js, the HAC estimator reduces to the standard heteroskedasticity-

consistent variance estimator of White (1980). One can allow for cross-sectional depen-

dence by choosing weights such that W (it, js) 6= 0 for i 6= j and may produce weights

that are appropriate for weak dependence in the cross-section by choosing W (it, js)

to depend on ‘economic distance’ between firms, with smaller values of W (it, js) for

more distant firms. Similarly, weak dependence in the time series can be accounted for



13

by allowing W (it, js) to depend on the intertemporal distance between observations,

|t− s|.

In this review, we focus on the special case of cluster covariance estimators. Conven-

tional cluster covariance estimators correspond to (5) using the weighting W (it, js) = 1

if observations it and js belong to the same specified group of observations. Typically,

these groups are formed by partitioning the data along a particular dimension or set

of dimensions. As examples, a researcher may choose to cluster by firm, which cor-

responds to setting W (it, js) = 1 whenever observation it and observation js belong

to the same firm; or a researcher may choose to cluster by state which corresponds to

setting W (it, js) = 1 whenever observation it and observation js belong to the same

state. Clustered covariance estimators have a number of appealing features. They are

positive semi-definite by construction and are easy to compute. They also allow for very

general correlation within cluster but ignore, in terms of forming the estimator for V0,

any correlations across groups. Cluster covariance estimators are also easily explained;

a researcher simply needs to specify the definitions of groups, e.g. states, to convey that

estimated standard errors are robust to very general correlation between observations

belonging to each state but rely on assuming that correlations between observations

from different states are ignorable. These estimators have long been employed in ap-

plications with a large number of groups (clusters) that are assumed independent; see,

e.g., Liang and Zeger (1986) and Arellano (1987).

HAC estimators can also be used with multiple metrics used to define the W weights.

For example, W (it, js) could be set equal to one if t and s are close in time and if either

firms i and j have similar technology or have suppliers located in similar geographic

regions. Multi-way clustering, e.g. Cameron et al. (2011), is a popular special case

of HAC estimation accounting for multiple indices. The most popular version is two-

way clustering which relies on using two different clustering partitions. For example,

one set of N clusters could be individual firms and another set could define T groups

consisting of all observations with a common time period. Two-way clustering with

these partition sets W (it, js) = 1 if i = j or t = s and equal to zero otherwise.

Like (one-way) clustering, multi-way clustering estimators are easy to compute and

explain. To explain the type of dependence one is robust to, a researcher again simply

needs to specify the definition of groups, e.g. two-way clustering by state and time, to

convey that estimated standard errors are robust to very general correlation between
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observations belonging to the same state or belonging to the same time period but rely

on assuming that correlations between observations that share neither state nor time

period are ignorable.

Multi-way clustering estimators are intuitive but do suffer from some drawbacks.

Unlike one-way clustering, multi-way clustering may produce negative variance esti-

mates. In practice, this defect tends to be resolved by adding an ad hoc positive

number to the variance in cases where a negative variance is estimated as in Cameron

et al. (2011). It is also important to remember that consistency of the multi-way clus-

tering estimator relies on very stringent conditions that require, at a minimum, that

the smallest number of groups along any of the dimensions along which one is cluster-

ing is very large. In applications like Balakrishnan et al. (2014), where the number of

time periods per firm ranges from 2 to 17, regarding such estimators as consistent is

problematic. Moreover, it will be implausible for there to be appreciable correlations

across some sets of firms at a point in time, appreciable correlation within each firm

over time, but no correlations between these same firms at distinct but close points in

time in many applications with firm-level panels.

Inference using approximation (4) and a HAC estimator for V̂c will work well in

scenarios where dependence is weak enough that only a modest number of the W (it, js)

weights need to be nonzero, relative to the sample size, to capture the contribution of

covariances to V0. A classic example where this seems like a sensible approximation

is in a very short T panel on a large number N of independently sampled individuals.

In this setting, maintaining that W (it, js) = 0 for all i 6= j seems reasonable which

leaves relatively few non-zero weights. However, there are also many applications

where correlations across observations are high enough that it is difficult to estimate

V0 because of the contributions of all the covariances to V0 in (3). We suspect that this

setting encompasses many applications in accounting and finance with observational

data on firm-level or aggregate-level data that is likely correlated both in space and

time. Estimators of V0 in such examples are better viewed as noisy and perhaps biased

estimators of V0. In such applications the standard normal distribution can be a very

bad approximation to the sampling distribution of t-statistics.

Illustrating the Bias-Variance Tradeoff in HAC Estimation: Moving Av-

erage Example. As a heuristic illustration of what goes into establishing consistency

of a HAC estimator, consider the simple case of a single time series of T observations
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from a stationary first-order moving average with Cov(ηt, ηt−1) = θ and Var(ηt) = σ2.

Note that we would have V0 = σ2+2θ in this case, and we would have an exact variance

of
√
T (ȳ − µ0) equal to VT = σ2 + 2θ T−1

T
. Further suppose that standard errors will

be estimated using a clustering estimator that groups together blocks of adjacent time

series observations, and suppose that the {ηt}Tt=1 were actually observed. Note that the

following discussion could be made rigorous and allow for estimation of the residuals;

see Bester et al. (2011).

Suppose that one wished to use GT > 1 clusters. Ignoring integer problems, forming

GT groups would correspond to each group consisting of nT = T/GT consecutive

observations with group one containing observations 1, ..., nT , group two containing

observations nT + 1, ..., 2nT , and so forth. In this case, we would have

V̂GT
=

1

T

GT∑
g=1

gnT∑
s=(g−1)nT+1

gnT∑
t=(g−1)nT+1

ηsηt.

We would then have E[V̂GT
] = 1

T
GT (nTσ

2 + 2(nT − 1)θ) = σ2 + 2θ T−GT

T
from which we

obtain the bias of the estimator

Bias[V̂GT
] = {σ2 + 2θ

T −GT

T
} − {σ2 + 2θ

T − 1

T
} = −2θ

GT − 1

T
. (6)

Letting ωst = ηsηt − E[ηsηt], we can also write the variance of V̂GT
as

Var[V̂GT
] =

1

T 2

GT∑
g=1

gnT∑
q=(g−1)nT+1

gnT∑
r=(g−1)nT+1

GT∑
h=1

hnT∑
s=(h−1)nT+1

hnT∑
t=(h−1)nT+1

E[ωqrωst]. (7)

Importantly, assuming all expectations are bounded, the summation in (7) will consist

of the order ofGTn
2
T non-zero terms even in the best possible case where all observations

were independent (and recall that they are not in this example). Taking this optimistic

rate gives

Var[V̂GT
] = C

GTn
2
T

T 2
= C

nT
T

(8)

for some constant C that would depend on higher-order moments of the ηt. Expressions

(6) and (8) then give us a crude set of conditions which can be used to discuss the

bias-variance tradeoff in this simple example.

First, suppose that one wished to use T clusters which would correspond to setting

W (t, t) = 1 and W (t, s) = 0 for all s 6= t. In this case, the HAC estimator would

correspond to White (1980) which does not allow for dependence. Looking at expression
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(6), we can see that bias of the estimator is 2θ T−1
T

which does not approach 0 even for

large T . On the variance side, (8) gives Var[V̂GT
] = C/T → 0; so the estimator would

be inconsistent. The inconsistency in this case is because the clustering structure,

which does not allow any correlation in this example, is not rich enough to capture the

true dependence in the data; so the estimator is arbitrarily close to the wrong value

with high probability in large enough samples.

Next, we can see that using any sequence of clustering structures with nT

T
→ 0 will

be sufficient to produce an estimator with arbitrarily small variance in a large enough

sample based on the heuristic bound in (8). However, as illustrated in the preceding

example, having variance go to zero is insufficient to produce a good estimator as we

would also like bias to be small. Producing small bias relies on having GT

T
→ 0. Having

variance go to zero requires that we consider a sequence of clustering structures where

we would use larger numbers of clusters when faced with larger sample sizes such that

GT →∞ and, thus, nT

T
= 1

GT
→ 0. Note that the combination of the bias and variance

conditions, GT

T
→ 0 and 1

GT
→ 0, requires that the number of groups increase slowly

relative to the total sample size. Asymptotically, we would have V̂GT

p→ V0 and the

standard normal distribution would provide a good approximation to the sampling

distribution of the t-statistic under these rate conditions.

It is this heuristic analysis that underlies the traditional use of HAC estimators. The

basic argument of course carries through to much more general dependence structures

and other, non-cluster-based HAC estimators. The approach is useful in many circum-

stances but is somewhat unsatisfactory. We can see from the previous discussion that,

for example in the clustering case, any sequence of grouping choices where the number

of clusters eventually grows large would satisfy the asymptotic conditions.

More insight can be gained by noting that the number of groups chosen corresponds

to a choice of how much dependence to account for in estimating V0, which translates

directly into a bias-variance tradeoff for the V0 estimator. We can see from equation

(6) that using a large number of groups allows for very little dependence and may thus

produce strongly biased estimates of V0 even in large samples, while keeping variance

low by having few covariance terms. Choosing a smaller number of groups reduces bias

by including more covariance terms in the estimator of V0 at the cost of producing an

estimator with more variance as can be seen from equation (8). Through the choice of
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weighting function, all HAC estimators have a similar tradeoff with estimators which

set many weights to zero tending to have high bias and low variance and estimators

that set relatively few weights to zero tending to have low bias but high variance.

There are many papers that address the choice of weighting structure to trade off

these forces in the econometrics literature within the framework illustrated above that

starts from the premise that V̂GT

p→ V0. Early work in this area focuses on properties

of the HAC estimator itself, e.g. Andrews (1991) and Newey and West (1994). More

recent work has focused on making this choice in a way that trades off type I and type

II errors in testing hypotheses about parameters of interest, e.g. Sun et al. (2008) and

Wilhelm (2015).

Remark 1. A Comment on Mechanical Bias When the Number of Clusters

is Small. There are actually two sources of bias inherent in HAC, and therefore

clustered standard error, estimation. The first source of bias, which is what we have

focused on, results from using an estimator for standard errors that fails to account for

the actual dependence in the data. In our simple MA(1) example, this bias is captured

in expression (6). The other source of bias is mechanical and results from estimation

error in residuals. To see this bias, consider again the case where we are interested

in estimating the sampling variance of a sample mean using only one cluster. Define

estimated residuals η̂t = yt− ȳ. With GT = 1 and using estimated residuals, we would

have V̂GT
= 1

T

∑T
s=1

∑T
t=1 η̂sη̂t = 1

T

(∑T
t=1 η̂t

)2
= 0 because

∑T
t=1 η̂t =

∑T
t=1(yt − ȳ) =

0. This mechanical bias is especially pronounced when small numbers of groups are

used in clustered variance estimators which may seem disquieting and may be pointed

to as a reason to avoid using a small number of clusters. However, while technical, it

is also relatively easy to appropriately adjust for this mechanical bias in many cases.

Indeed, the familiar “degrees of freedom” adjustments made when estimating sample

variances, e.g. normalizing by N − 1 rather than N when estimating the usual sample

variance, is an example of such an adjustment in a simple setting. More generally,

the approaches discussed in Sections 3.2-3.4 account for and remove the effect of this

mechanical bias. As a practical matter, it is important to recognize that this mechanical

bias exists and thus to use a procedure which addresses it; but the existence of this

bias is not a reason to be wary of using a small number of groups in clustered variance

estimation.
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3.2. Inference Based on High Variance HAC Estimation. Looking at the finite

sample bias and variance results given in (6) and (8) in Section 3.1, we can see a

potential issue with an approximation that relies on the HAC estimator, V̂GT
, being

arbitrarily close to the true sampling variance, V0, with high-probability. Such an ap-

proximation implicitly relies on the estimator having both ignorable bias and ignorable

variance in a researcher’s given finite sample. However, we can see from (6) and (8)

that there will be both bias and variance in any finite sample. It is also clear that

keeping bias small leads to the use of a small number of groups which will result in

having a large variance in a given finite sample. Again, we note that the simple heuris-

tic discussion provided in Section 3.1 carries over to much more general and realistic

settings where, under richer dependence structures, there is even more pressure to use

a small number of groups (or a large number of non-negligible weights in the more

general HAC setting) to manage bias which will be associated with large finite-sample

variance of the estimator of V0.

This tension provides the motivation for a different style of approximation, developed

in Kiefer and Vogelsang (2002, 2005) and Vogelsang (2003). These approximations give

up on the notion of obtaining a consistent estimator of V0 and instead focus on HAC

estimators that allow for a large amount of dependence, for example by using a small

number of clusters in the case of clustered standard errors, and thus have relatively

small bias but potentially large variance. In this case, the asymptotic approximation

makes use of an inconsistent standard error estimator. Unlike the example given in

Section 3.1, the inconsistency in this scenario does not arise from using an estimator

that concentrates quickly around the wrong value but rather arises from using an esti-

mator that keeps bias small but has a nonvanishing variance even in large samples. The

cleverness of this approach is that the approximation then accounts for a feature which

is always present in finite samples: the estimated standard error itself has sampling

variation.

Slightly more formally, this approach leverages the insight that it is not necessary

to have a consistent estimator of V0 in order to get a good approximation of the

sampling distribution of t-statistics. The chief difficulty in inference is the presence of

the unknown scale V0, and it turns out that inference can be done using an estimator

of V0 with the right scale even when this estimator is quite noisy and properly viewed

as inconsistent. Specifically, suppose an estimator

√
V̂NT has a distribution that is
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approximately
√
V0 times a random variable W where W does not depend on V0 or

other unknown nuisance parameters; i.e. the estimator satisfies an appropriate sense

“unbiasedness”.7 Under this condition, the distribution of the t-statistic is

t =

√
NT (ȳ − µ0)√

V̂NT

approx∼
√
V0N(0, 1)√
V0W

=
N(0, 1)

W
. (9)

If the ratio N(0,1)
W

has a tractable, nuisance-parameter-free distribution, one can do

inference using a standard t-statistic formed using a HAC estimator for V̂NT but with

critical values from the distribution of N(0,1)
W

which will in general differ from the usual

standard normal critical values. The chief complication that arises in this general set-

ting is that the distribution of N(0,1)
W

will rarely correspond to a known distribution

and appropriate critical values must be obtained by simulation; see, e.g. Kiefer and

Vogelsang (2002, 2005), Vogelsang (2003), and Bester et al. (2016). Results in the

aforementioned papers, Sun et al. (2008), and Bester et al. (2011) show that using the

approximation in (9) outperforms inference based on the standard normal approxima-

tion across a wide range of data-generating processes and settings.8 This approach

is readily extended to handle tests of multiple hypotheses if desired, as shown in the

papers referenced previously.

While simulating the distribution in (9) is generally straightforward, Bester et al.

(2011) show that the special structure of (one-way) clustered standard error estimators

allows this distribution to be characterized analytically when (i) there are a large

number of observations per group, (ii) groups have approximately equal numbers of

observations, and (iii) variances of observables are approximately homogenous across

groups. This analytic characterization bypasses the need for simulation. Specifically,

Bester et al. (2011) show that

t =

√
NT (ȳ − µ0)√

V̂NT

approx∼
√
V0N(0, 1)√
V0W

=
N(0, 1)

W
=

√
G

G− 1
tG−1 (10)

where tG−1 denotes a Student t distribution with G−1 degrees of freedom and G is the

number of clusters used in forming V̂NT . Note that the expression in (10) is equivalent

7Note that W will depend on the mechanical bias discussed in Section 3.1. By explicitly accounting

for W , the approximation (9) will thus directly account for this mechanical bias.
8We also provide some evidence on this within our simulation example in results reported in the

supplementary appendix to this paper.
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to stating that a rescaled version of the t-statistic,
√

G−1
G
t, approximately follows the

usual Student t distribution with G−1 degrees of freedom. Further note that rescaling

the t-statistic in this way is equivalent to rescaling the variance estimator as G
G−1 V̂NT .

This rescaling of the variance is exactly what offsets the mechanical bias discussed in

Remark 1.9 There seems to be little reason not to use these critical values in all cases

where clustered standard errors are used. When the number of groups is small, the

use of t, rather than standard normal, critical values helps account for the additional

uncertainty in inference due to noisily estimated standard errors, and the t critical

values converge to the usual critical values when the number of groups is large. Of

course, when conditions (i)-(iii) stated above are not satisfied, the approximation (10)

may not hold and one may wish to use different inferential methods, such as those

discussed in Section 3.3.

Operationally, the inference procedure for a single parameter from Bester et al.

(2011) outlined above is very similar to usual practice. For example, suppose one were

interested in testing a hypothesis at the 5% level. Common practice would be to re-

ject the hypothesis if the absolute value of the t-statistic for testing the hypothesis

exceeded 1.96. Similarly, common practice for providing a 95% level confidence inter-

val is to take the point estimate plus and minus 1.96 times the estimated standard

error. The procedure outlined above, which accounts for the uncertainty in estimating

the standard error, simply replaces the critical value 1.96 with the appropriate 97.5%

quantile from a t-distribution with G− 1 degrees of freedom. For example, if one used

5 groups in estimating standard errors, one would reject a hypothesis at the 5% level

only if the t-statistic were larger than 2.78 in absolute value and would form a 95%

level confidence interval as the point estimate of the parameter of interest plus and

minus 2.78 times the estimated standard error.

9It is interesting that this scaling is what is implemented in Stata (Stata Corporation (2013) p.

314) for calculating clustered standard errors with most commands. The exception is for linear models

where the calculation in Stata rescales by G
G−1 and then makes an additional adjustment that will

be negligible in most applications. Confidence intervals reported by Stata after the use of the cluster

command also use critical values from a tG−1 rather than a standard normal. That is the confidence

intervals returned by Stata implement the approximation in (10).
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Figure 1. Critical values for 5% level tests for differing number of groups used in

forming clustered standard errors. The number of clusters used minus one is presented

on the axis. The horizontal line is the usual standard normal critical value, provided

for reference.

For small numbers of groups, the critical values from a t-distribution differ sharply

from those that are conventionally employed. For reference, critical values for two-

sided 5% level tests or 95% level confidence intervals for different numbers of groups

are presented in Figure 1. The horizontal line in the figure denotes the usual critical

value from the standard normal approximation. It is clear from Figure 1 that critical

values from a t-distribution differ substantively from standard normal critical values

for small numbers of groups but converge rapidly as the number of groups increases.

The pattern of critical values illustrates a tradeoff between robustness and the pre-

cision with which conclusions can be drawn from dependent data. To be robust to

potential strong dependence, a small number of groups is necessary to keep bias small.
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The cost of keeping bias small is an increase in uncertainty in the standard error esti-

mator itself which translates into an increase in critical values. The increase in critical

values then naturally leads to less precise statements about what can be learned about

parameters of interest in a given data set. To the authors’ knowledge, there is no

reliable data-dependent way to choose the number of clusters at present. However,

a heuristic argument suggests that using between 5 and 10 groups - provided these

groups have similar sizes and the within-group variance of observables is roughly ho-

mogeneous across groups - is likely to be desirable in many applications. From the

pattern of critical values in Figure 1, we can see that most of the gains to precision

of inferential statements in terms of decreased critical values are made by increasing

the number of groups to this region. At the same time, using these small numbers

of groups should provide robustness to reasonably rich dependence structures. The

simulation study in Section 4 provides further evidence regarding this choice.

The more refined approximations outlined in this section are relatively easy to imple-

ment, either leveraging the analytic results available within the clustering framework or

via simulation in the more general setting, and offer considerable improvements relative

to approximations that rely on treating standard error estimators as extremely well-

estimated. However, the results also rely on some crucial assumptions as mentioned

above and further elaborated upon below.

First, the weights used in forming the HAC estimator must have been chosen in a way

that results in capturing all important sources of dependence in the data so that the

non-mechanical bias in the estimator is small. This condition is true of any approach

that aims to deliver valid inference but is worth remembering. In the clustering case,

this condition will tend to be more plausible when one uses relatively few groups with

large numbers of observations formed by keeping observations that seem likely to be

related together.

Some intuition for the dependence condition in the clustering case is that the theoret-

ical results rely on averages within clusters being approximately Gaussian and approx-

imately independent. The approximate Gaussianity of group averages relies on having

a reasonably large number of observations within each cluster, and the approximate

independence relies on there being only weak correlation across clusters. Assuming

that clusters are formed respecting the dimensions along which dependence truly lies,

correlation across clusters can only occur near cluster boundaries. If clusters are large,
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most observations within a group will be in the interior of the cluster and therefore,

as a consequence of weak dependence, approximately independent of observations in

other groups. With large clusters, group boundaries are small relative to their interior

and thus the amount of neglected correlation resulting from spillovers across group

boundaries will be correspondingly small relative to the correlation captured by the

clustered standard error estimator which accounts for all the correlations among the

observations interior to the clusters. Of course, the stronger the correlations across

observations, the larger the spillovers across cluster boundaries will be. Keeping these

spillovers small relative to the total correlation that is captured by the clustered stan-

dard error estimator will then require larger group sizes, and hence smaller numbers

of groups, in more strongly dependent cases.

Second, the results depend upon the distribution in (9) not depending on any un-

known parameters. To achieve this, the formal analysis depends on strong conditions

that restrict heterogeneity across observations. In the clustering context, a homogene-

ity condition across clusters is required to hold. This homogeneity condition requires

that, in a linear model, the design matrix needs to be similar across clusters. With

a single right-hand-side variable and equally-sized groups, this homogeneity would re-

quire that, in the limit, the variance of the right-hand-side variable within each cluster

be the same across all clusters. This restriction is strong and may be implausible. It

will likely be violated when clusters are formed from very different numbers of obser-

vations. For example, clusters based on industry classification or countries could easily

have very disparate numbers of firms. This condition could be especially unpalatable in

some situations in which clusters are formed based on measures of “economic distance.”

For example, if one thought there were shocks that affected all small firms differentially

from how they affected large firms, it would make sense to form clusters by grouping

firms on the basis of their size. Of course, one might anticipate that the variability in

observables within the firms in the “small firm” cluster would be quite different from

firms in the “large firm” cluster, at odds with the homogeneity restriction.

3.3. Inference with Sample Splitting. An idea which is closely related to clustering

is to base inference on a procedure that splits the sample into the groups that would

be defined by the clusters and then estimates the model of interest within each group.

A point estimate of the parameter of interest can then be obtained as the average

of the within group estimates, and variation across these estimates can be used to
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estimate the sampling variance of this estimator. This approach was popularized in

Fama and MacBeth (1973) and was rigorously justified under a wide range of structures

for the case of inference about scalar hypotheses allowing for a small number of groups

in Ibragimov and Müller (2010, 2016). Canay et al. (2017) build upon this idea and

consider permutation inference using the group level parameter estimates. Canay et al.

(2017) may be used to test joint hypotheses and may have advantages relative to

Ibragimov and Müller (2010, 2016) at the cost of needing to do permutation inference.

In the following, we illustrate the basic FM procedure in the simple location model

used in the previous sections. We refer readers to Canay et al. (2017) for an outline of

the permutation inference approach. Suppose the data are partitioned into G groups

with each observation belonging to one and only one group. We first partition the

data into the corresponding G subsets and estimate the sample mean within each

subsample. Using ȳg to denote the sample mean obtained in group g, this process

results in a collection of group-specific estimators {ȳg}Gg=1. Under weak regularity

conditions, each group-specific estimator will be approximately normally distributed;

and they will be approximately independent following the same reasoning outlined for

cluster estimators in Section 3.2 as long as the number of observations within each

group is large and the groups were chosen to appropriately capture the dependence in

the data.

We can then treat the G group level estimates, {ȳg}Gg=1, as though they were ob-

servations from an independent Gaussian location model and use these G “pseudo-

observations” to estimate the parameters of the Gaussian distribution and do inference.

Following this logic, we can define a point estimator for the overall mean, µ̂ as

µ̂ =
1

G

G∑
g=1

ȳg.

Inference also proceeds in a straightforward manner using the usual estimator of the

sampling variance of a sample mean estimated from G observations:

S =

(
1

G− 1

G∑
g=1

(ȳg − µ̂)2

)
/G.
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Ibragimov and Müller (2010) shows that inference for µ, can proceed under general

conditions using the usual t-statistic

t =
µ̂− µ0

S1/2
(11)

along with critical values from a tG−1 distribution. Importantly, the conditions em-

ployed in Ibragimov and Müller (2010) allow quite general heterogeneity across groups.

Ibragimov and Müller (2016) and Canay et al. (2017) extend these results and similarly

allow for general across-group heterogeneity.

The conditions for how the sample should be split for this approach to work well are

analogous to those for choosing clusters in Section 3.2. First, just as with clustering, the

sample splits need to have been chosen in a way that all important sources of correlation

have been captured so the bias in the standard error estimator is relatively small.

Subsamples must be large enough for their subsample averages to be approximately

Gaussian and so that most observations are ‘interior.’ Note that, as in Section 3.2, it is

not required that the subsamples are literally independent; it is only required that the

missed sources of correlation are small relative to the overall variance of the estimator

(which we often proxy for with the subsample size).

The main benefit of sample-splitting procedures relative to clustering or other HAC

based procedures is that their validity in the case where a small number of groups is used

does not rely on strong homogeneity conditions. They remain valid when groups are

not approximately equal-sized and when observables across groups are heterogeneous.

This robustness makes sample splitting approaches especially appealing in complex

settings such as firm level panel data where heterogeneity across observations and

among groups seems likely ex ante.

For the simple FM approach discussed above, this robustness comes at a cost. The

reason that the approach discussed in Section 3.2 fails under heterogeneity is that

the distribution of the t-statistic in (9) depends on unknown objects that are related

to the exact heterogeneity in the data. Ibragimov and Müller (2016) show that the

structure induced by sample-splitting and aggregating in the manner employed in the

FM procedure allows one to prove that the critical values from a tG−1 are upper bounds

on the critical values from the distribution of the statistic in (11) regardless of the actual
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nature of heterogeneity.10 This result means that the procedure outlined above using

critical values from a tG−1 distribution is valid very generally in the sense that tests

will have size that is no worse than the desired level - e.g. a 5% level test will reject

true null hypotheses no more than 5% of the time - and confidence intervals will have

at least the desired level of coverage - e.g. a 95% confidence interval will cover the

true parameter at least 95% of the time. Importantly, this conservativeness is different

from the potential conservativeness resulting from allowing for too much dependence

shared by all procedures that aim to be robust to dependence and is the result of using

an upper bound on the critical value that one would obtain from the true distribution

of the statistic in (11) under the actual heterogeneity in the data.

The permutation inference approach of Canay et al. (2017) is designed to remove the

conservativeness from the simple FM procedure by simulating the distribution of (11)

using the information in the data. Theoretically, Canay et al. (2017) promises to exactly

control size and so is not conservative under across group heterogeneity. The simulation

required in the Canay et al. (2017) approach presents a small cost. However, the main

limitation of this procedure is that, because it relies on a permutation distribution

produced from G pseudo-observations, one needs a sufficient number of groups to have

any power. For example, one needs at least six groups to have any power for 5% level

tests. Thus, it is not well-suited to applications where the number of observations

per group needs to be quite large due to substantial correlations across observations,

resulting in very few groups.

Remark 2. Clustering vs Sample-Splitting. There is a tight connection between

sample-splitting and clustering approaches for inference. In terms of large sample

performance, there is relatively little reason to prefer clustering with a small number

of groups relative to a sample-splitting approach with the same groups. Inference from

the sample-splitting approach remains valid under weaker technical conditions than

used in establishing validity of inference based on clustered standard errors, and the

conservativeness of the sample-splitting approach can be removed by applying Canay

et al. (2017).

The discussion is more nuanced when one examines finite-sample performance. The

chief potential for problems with sample-splitting approaches comes from the fact that

10The result actually only holds in the tails of the distribution but covers inference at levels 5%

and less which suffices for most applications.
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only a fraction of the observations are used to estimate each of the group specific

parameters that are then aggregated to form the final estimator of the parameter of

interest. In a situation in which each of the underlying estimators is well-behaved and

approximately unbiased, the sample-splitting simply induces larger variability in the

estimators within each subsample that is then averaged out when producing the final

estimator. In this case, there is no obvious benefit to using the full-sample to obtain

point estimates and the robustness to heterogeneity available through the sample-

splitting approaches makes them extremely attractive.

This discussion changes when the point estimates obtained within subsamples are

not well-behaved due to, for example, being highly variable or having substantial finite

sample bias. If the subsamples are small relative to the number of parameters in a

model, then estimates within the subsamples may vary wildly which may substantially

degrade the performance of the ultimate estimator. For example, one might want to

form groups in a firm-level panel by using SIC codes or some other notion of industrial

classification to capture the presence of shocks within industries that affect the firms

within industry differently. The presence of some industries with very few firms may

then lead to unstable estimates of parameters of interest. This behavior is illustrated

in the simulation example in Section 4.

Scenarios with finite sample biases can also result in poorly-behaved subsample esti-

mators. Leading examples are estimation of instrumental variables models and estima-

tion of panel data models with fixed effects and predetermined variables such as lagged

dependent variables. When there are finite sample biases, the bias in the within-group

estimated parameters will correspond to the number of observations per subsample.

In general, the bias in each subgroup estimator will be much larger than the bias that

would result when using the full sample and will not average out in forming the overall

point estimator. For example, consider instrumental variables estimators with a full

sample of 500 observations cut into 10 groups of 50 observations each. Intuitively, each

subsample estimator would be expected to have bias 10 times the magnitude of the

bias in the full sample estimator, and the final point estimator resulting from averaging

these 10 biased estimates would also be expected to have bias 10 time magnitude the

bias of the full sample estimator. The presence of this bias can then result in worse

performance than inference based on the full sample estimator with HAC standard

errors even in the presence of heterogeneity as illustrated in Bester et al. (2011). This
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bias problem can be reduced by using fewer, larger groups which provides further mo-

tivation for using a small number of large groups beyond the benefit of allowing for

substantial dependence among observations.

Remark 3. Aggregate Variables. Having a variable of interest that only varies

at some more aggregate level is a fairly common occurrence. As a simple illustration,

suppose the model of interest is

yic = α + βxc + εic (12)

where yic is an outcome of interest for firm i in country c, xc is a policy variable that

varies only at the country level, and α and β are the model parameters with β being

the parameter of interest. If one believed that observations on firms from the same

country were dependent but that observations on firms from different countries were

independent, one could directly estimate and do inference for β by estimating (12) by

least squares and estimating standard errors by clustering at the country level. Of

course, if one split the data by country and attempted to estimate (12) using only

the within-country subsets of the data, there would be no variation in xc leaving one

unable to identify β.

Despite this problem, one may still use sample-splitting to estimate parameters on

variables that only have variation on some aggregate level. The easiest approach would

be to form subsamples that are large enough to have variation in the variable of interest

within subsample. For example, one could group collections of geographically similar

countries together in the country-level example above. In this case, one could directly

apply a sample-splitting procedure using these larger subsamples and would also obtain

additional robustness to dependence that spills across country borders but is related to

geographic location. A different intuitive, but generally invalid, strategy would be to

just form groups based on some other variable that maintains within group variation

in the aggregate variable. For example, one could form groups by industry rather than

country assuming industries have presence in multiple countries. Grouping by industry

would however result in large spillovers across groups under the assumption that firms

from the same country are correlated as every group would involve observations from

many of the same countries.

It is worth noting that the fundamental problem of having only aggregate-level varia-

tion in a variable of interest is that often there is little variation in the data for learning
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about the effects of such variables. Valid inference will therefore often be imprecise

and often rely on imposing strong restrictions. In the context of sample-splitting, one

would like within-subsample estimates to be well-behaved, as discussed in Remark 2,

which may be difficult to achieve in some practical situations. For example, if one

has a single cross-section of U.S. data and state-level policy variables, one may be

tempted consider groups formed from say the nine U.S. census divisions in order to

have a modest number of groups. However, each of these groups will consist of only

between three and nine states; and it may seem implausible to maintain that this little

state-level variation is sufficient to generate well-behaved within-subsample estimates.

In this example, one may prefer to use a much coarser grouping scheme, say splitting

into only two groups, and the resulting large critical values if one wishes to use the

sample-splitting approach.

3.4. Bootstrap. The bootstrap has been a standard tool of inference since Efron

(1979). The basic idea of the bootstrap is to use simulation to approximate the fi-

nite sample behavior of statistics. Bootstrap inference proceeds by generating many

‘bootstrap datasets’ where each of these bootstrap datasets ideally has approximately

the same distribution as the original data. One may then compute a statistic of inter-

est within each generated bootstrap dataset and use the resulting distribution of the

statistic to approximate the sampling distribution of the statistic computed from the

original data. If the mechanism used to generate the bootstrap data exactly coincided

with the true data generating mechanism, this bootstrap distribution would be exactly

the finite sample distribution of the statistic of interest. More generally, the bootstrap

distribution will provide a high-quality approximation to the sampling distribution of

the statistic when the mechanism used to generate the bootstrap data approximates the

true data generation mechanism and may provide a useful approximation even when

the bootstrap data is far-from-perfect at replicating the true data generating process

(DGP).

Bootstrap inference is potentially valuable for t-statistics in our firm-level panel data

for at least two reasons.11 The method inherently accounts for sampling variation in

standard errors because the components of test statistics, e.g. the point estimate for the

11One could also use the bootstrap to generate standard error estimates. We do not pursue this

approach as it tends to perform poorly relative to bootstrapping test statistics both theoretically and

in practice when analytic standard errors are easy to compute as they are in the present setting.
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regression coefficient and the associated standard error used in forming a t-statistic, are

recomputed on every simulated dataset. Accounting for this sampling variation in stan-

dard errors is especially important in dependent data settings such as our motivating

firm-level panel data model as has been discussed in Sections 3.2 and 3.3. Bootstrap-

ping test statistics is thus similar to the approaches for obtaining reference distributions

accounting for standard error sampling variation via high variance HAC estimators,

clustering approaches with a small number of large clusters, or sample-splitting FM

approaches. Moreover, there is also potential for bootstrap approximations to be more

accurate for t-statistics than the usual large-sample approximations. Theoretical work

has demonstrated that when bootstrap simulations closely approximate the true DGP,

bootstrap reference distributions can provide more accurate approximations to sam-

pling distributions than conventional large sample approximations; see Gotze and Kun-

sch (1996), Hall and Horowitz (1996), Andrews (2002), and Inoue and Shintani (2006).

It is a challenge of course to approximate the dependence structure across firms and

time in a firm-level panel. However, we may still see benefits in practice from using

bootstrap inference even if only part of the correlation structure in the true DGP is

captured by our simulated data.

To illustrate the basic approach, let µ0 denote the true value of a parameter of interest

and µ̂ be its estimator using the actual data. Let s denote an estimator of the standard

error of µ̂. In a regression example, µ could be the true coefficient on a variable of

interest, µ̂ the OLS estimator of this coefficient, and s the estimated standard error

of this coefficient based on one-way clustering with a given group structure. We then

wish to use the bootstrap to approximate the sampling distribution of the t-statistic,

t = µ̂−µ0
s

.

Our first step is to draw b = 1, ..., B ‘bootstrap samples’ that have the same di-

mensions as the actual dataset. We draw these bootstrap samples using a computer

simulation from what we will call a bootstrap DGP. There are a variety of options

for this bootstrap DGP which we will discuss below, all of which are easy to simulate

and attempt to mimic the true DGP which generated the actual dataset. Within each

bootstrap sample, we compute µ̂b and sb by applying the same estimator of µ and

standard error estimator as used in the actual data to the bootstrap data. In our

regression example, the µ̂b and sb are the OLS estimator of the coefficient of interest

and the associated clustered standard error computed using the bootstrap dataset b.
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We then compute a bootstrap t-statistic as tb = µ̂b−µ̂
sb

. Within the bootstrap, the

true value of the parameter of interest is (either exactly or approximately) µ̂ under any

of the bootstrap DGPs we consider. Therefore, tb is a draw from the (approximate)

distribution of the t-statistic when the null hypothesis is true and data are generated

by the bootstrap DGP. The collection {tb}Bb=1 thus represents a series of draws from

the (approximate) distribution of the test-statistic when the null is true, and we can

use percentiles of the {tb}Bb=1 to estimate critical values under the bootstrap DGP. 12

When the bootstrap DGP mimics the true DGP, these bootstrap critical values will

be good approximations for the critical values for the true sampling distribution of t.

Importantly, these bootstrap critical values will account for the sampling properties of

both the estimator of the parameter of interest µ̂ and its estimated standard error s

because both are recomputed in each new bootstrap sample. We will use the notation

F for the true DGP and F̂ for a bootstrap DGP.

The key choice in implementing any bootstrap is what to use for the bootstrap

DGP, F̂ , i.e. how to generate the bootstrap samples. In order for the bootstrap to

improve upon analytic large-sample approximations, the bootstrap needs to generate

data that mimics the dependence structure in the true DGP, F , that is relevant for

the statistic of interest. If F̂ captures all the dependence in F , the bootstrap will work

with any statistic of interest. Of course, generating data in a manner that perfectly

captures all sources of dependence is a tall order with the complicated dependence

structure found in firm-level panels. Fortunately, how much dependence F̂ needs to

capture depends on the test statistic and perfect replication of dependence structure is

unnecessary for many statistics. The demands upon F̂ can in principle be reduced by

choosing a t-statistic with a well-scaled denominator (high variance HAC estimator)

just as in equation 10. If the HAC estimator used for the denominator captures the

dependence, it will effectively ‘cancel out’ the influence of dependence upon the the

distribution of the t-statistic. In fact, Gonçalves and Vogelsang (2011) show that with

a perfect choice of HAC estimator for the denominator even using a F̂ that generates

independent and identically distributed (IID) data, and thus fails to capture any type of

dependence, is adequate to approximate the t-statistic’s sampling distribution in a time

series setting. We anticipate the most relevant case in practice with firm-level panels is

12For example, let ĉvα be defined as the 1 − α percentile of {|tb|}Bb=1. We can perform an α level

test by rejecting the null hypothesis whenever |t| > ĉvα.
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that the estimators used in forming the denominators in t-statistics will be imperfect,

and it will thus be important for the bootstrap DGP to capture at least some of the

dependence in F . In the following two subsections, we outline two different potential

panel data bootstrap DGPs.

3.4.1. Time Block Bootstrap. One approach to bootstrapping in a panel data setting

is to note that panel data may simply be as multivariate time series. With time

series data, the goal is to produce an approximation F̂ that mimics the relevant serial

dependence in F .13 We focus on a popular non-parametric method that generates

bootstrap samples by drawing sets of consecutive observations called blocks from the

original time series data; see, e.g., Carlstein (1986) and Künsch (1989). To describe

this idea, suppose the data consisted of a time series Zt for t = 1, 2, ..., T . Blocks could

be constructed from the original time series using pairs of consecutive observations,

i.e. {Z1, Z2}, {Z2, Z3}, {ZT−1, ZT}. The jargon for this set of blocks is that they are

overlapping and the block size is two. An overlapping blocks bootstrap with block size

of two then generates a simulated time series from F̂ by taking independent draws

with replacement from this set of pairs and stringing them together.14,15 Note that

one could consider different block sizes by defining blocks over longer sequences of

adjacent observations in the obvious way and correspondingly define overlapping blocks

bootstraps with different block sizes.16

Resampling from blocks of observations results in a F̂ in which the bootstrap data

exhibit some time series correlation and thus may be able to approximate an F that

13Early work on the bootstrap, Efron (1979), assumed IID data and used IID draws from the

empirical distribution of the sample - a uniform distribution with N points of support each equal to

the N observed data points - as F̂ . This is equivalent to resampling with replacement from the original

sample of observations. As first remarked by Singh (1981), this resampling scheme will not generally

work for dependent data because IID draws from an empirical distribution cannot approximate the

dependence present in the true DGP.
14When T is even, T/2 draws from the set of pairs will be strung together to form the simulated

time series. When T is odd a simulated series one period longer than T is simulated and the last point

discarded.
15In STATA the command bsample can be used to generate these series via drawing from clusters

defined as {Z1, Z2}, {Z2, Z3}, etc.
16The use of overlapping blocks is not crucial. For instance, Carlstein (1986) suggested resam-

pling non-overlapping blocks of consecutive observations. The use of overlapping blocks is generally

advocated due to the larger number of blocks available to be resampled.
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generates serially correlated data. Specifically, the correlation structure of the actual

data is maintained within each block by construction. It follows that using longer blocks

of observations allows the bootstrap data to exhibit more complicated dependence

structures which may improve the bootstrap’s ability to approximate the dependence

structure in the actual data. The cost of using longer blocks is that, by construction,

one is left with fewer blocks from which to sample which leads to a deterioration in

the performance of the bootstrap. In practice, one aims to choose a block size which is

long enough to capture the important correlations in the true DGP but is small enough

to leave an adequate number of blocks from which to sample.

Block bootstraps can be used with balanced panel data by simply viewing the panel

data as a vector time series. To implement a panel version of the overlapping blocks

bootstrap, one can construct bootstrap samples as above with Zt consisting of all

firms’ data at time t. Gonçalves (2011) presents a formal treatment of this overlapping

blocks bootstrap in the context of linear panel data models with cross sectional and

serial dependence of unknown form. 17 The combination of unbalanced panel data

where some firms are observed for many fewer time periods than others and common

fixed effects structures complicates implementation of an overlapping blocks bootstrap.

These complications will likely lead one implementing the overlapping blocks bootstrap

in practice to first restrict any unbalanced panel to a balanced subset. Assuming the

panel is unbalanced because observations are missing at random, which is a maintained

assumption in most commonly applied panel data methods, restricting attention to

a balanced subset does not introduce selection bias but clearly potentially leads to

efficiency losses as some observations are being discarded. We explore these issues in

the simulation example in Section 4.

Remark 4. Block Choice and Variance Heterogeneity for Block Bootstrap.

The choice of block size is highly related to the choice of groups or sample splits

discussed in Sections 3.2 and 3.3. Groups discussed in Sections 3.2 and 3.3 that include

all firms in sets of consecutive time periods are equivalent with non-overlapping blocks.

17It is common to use time to define blocks due to the widespread presence of serial dependence

and difficulty modeling cross section dependence in panels. However, in principle any partitioning

of the data into mutually exclusive and exhaustive groups could be used to define non-overlapping

blocks which can independently sampled as a bootstrap DGP, see Cameron and Miller (2015) and

MacKinnon and Webb (2017).
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In order to mimic a true DGP that generates highly serially correlated time series,

blocks need to be long (include many time periods) in order for the simulated data

to match this dependence pattern. This requirement is analogous to needing large-

enough groups so that correlations are mostly within-group not across group when

using a cluster HAC estimator or FM approach. However, the length of blocks is

inherently more limited in the block bootstrap approach because of the need to have

enough different blocks for the simulation to give reasonable approximations of draws

from the true DGP. Using overlapping blocks rather than non-overlapping blocks helps

but does not remove this limitation. As a result, this type of bootstrap inference will

likely perform poorly in applications which exhibit strong serial correlations where it

would be desirable to use a very small number, such as two or three, groups in cluster

HAC or FM approaches.

The panel block bootstrap is not subject to concerns about cross sectional het-

erogeneity because entire cross sections are contained in blocks as the data are split

into blocks only along the time dimension. However, it is important for the true DGP

for the time series to be stable in a sense over time. For example, block bootstraps

would not work well for non-stationary DGPs with growing variances over time. Thus,

the block bootstrap shares a drawback with inference approaches based on clustered

standard errors estimated using a small number of groups with many observations per

group in that neither will work well in scenarios with substantial variance heterogeneity

across groups/blocks.

3.4.2. Residual ‘Wild’ Bootstrap. The second bootstrap DGP we consider is better

suited to unbalanced panels than block bootstraps. Working with a balanced subset

of firm-level panels will be adequate for some applications, but many researchers will

want to work with a full, unbalanced panel with all available firms. This motivates

our investigation of a method that works well with unbalanced panels called a residual

bootstrap DGP that exploits a regression model and its residuals to generate bootstrap

simulations. We focus on a special case of a residual bootstrap called a wild bootstrap,

e.g. Härdle and Mammen (1993) and Mammen (1993).

Consider the linear regression model

yi = x′iβ + εi
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where xi and β are k × 1 vectors. The wild bootstrap uses an estimate of β, call it β̂,

and residuals ε̂i to generate a bootstrap sample that exploits this regression model.18

For each value of xi in the actual data, simulated outcomes are generated as

y∗i = x′iβ̂ + ε∗i

where ε∗i is generated so that by construction ε∗i has mean zero, variance ε̂i
2, and third

moment ε̂i
3. There are many mechanisms available for constructing such an ε∗i . In the

simulations in the following section, we use a suggestion from Mammen (1993) that

generates a random variable wi with mean zero, variance one, and third moment one

via combining two IID N(0,1) draws, v1,i and v2,i, as wi = v1,i/
√

2 + (v22,i − 1)/2. One

then generates a draw of ε∗i as

ε∗i = ε̂i ∗ wi. (13)

We use a simple adaptation of the wild bootstrap described above to allow for de-

pendence within groups/clusters. We use the full vector of residuals for all observations

within a given cluster in place of ε̂i. That is, we form a single weight for each cluster

as above, call it wg, and then construct the bootstrap residual for each observation i in

cluster g as wg ε̂i. Because each observation in the same cluster shares the same weight,

the within-cluster dependence structure is maintained. Note that, because the wg are

generated independently, this bootstrap produces bootstrap data that are independent

across groups. This modification of the wild bootstrap is called a cluster wild boot-

strap; see Cameron et al. (2008) and Djogbenou et al. (2017). Because it holds the

observed values of the regressors fixed, the wild bootstrap is well-suited to unbalanced

firm-level panels where it implicitly holds fixed the timing of the observations for each

firm.

Remark 5. Block Choice and Heterogeneity for Cluster Wild Bootstrap.

The choice of cluster structure for the cluster wild bootstrap is essentially identical to

the choice of groups or sample splits discussed in Sections 3.2 and 3.3. Clusters need to

be constructed such that correlations are mostly within-group not across group. This

may result in researcher having a very limited number of clusters which, in general, may

lead to this method performing poorly. It is possible for cluster wild bootstraps to work

18We will use OLS point estimates for β̂. However, we note that the estimate of β could be

constrained to impose the null hypothesis which could improve performance of the bootstrap as noted

by Djogbenou et al. (2017).



36 TIMOTHY CONLEY, SILVIA GONÇALVES, AND CHRISTIAN HANSEN

well when a homogeneity condition holds across groups. In recent work, Canay et al.

(2018) show that the cluster wild bootstrap delivers valid inference with a small num-

ber of clusters using a strong homogeneity condition and particular choice of weights.

Although the homogeneity condition of Canay et al. (2018) is weaker than that used in

obtaining the few clusters HAC approximation in (9), this version of the cluster wild

bootstrap will also struggle with across group heterogeneity in firm-level panels where

complex dependence motivates the use of a few, large clusters.

4. Simulation Performance

In this section, we present evidence on the performance of several procedures for

performing inference in dependent data using simulated data. The simulated data are

calibrated to capture the types of variables and dependence that one might encounter

in typical accounting or corporate finance data. Because the data we use are simulated,

we know the true values of the parameters in the simulation data generating process.

Thus, we can evaluate the performance of various procedures for conducting inference

about these parameters.

We base our simulation on data from Balakrishnan et al. (2014) which investigates

how firms’ financing and investments are related to reporting quality and how reporting

quality is influenced by financing capacity. We focus on a specification in which they

look at how a firm’s investment is influenced by its collateral value and how this

effect varies with its reporting quality. The hypothesized mechanism is that increases

in reporting quality reduce information asymmetries which lowers financing frictions.

These lower financing frictions then reduce the sensitivity of investment to fluctuations

in collateral values. The regression we use is motivated by the Balakrishnan et al.

(2014) hypothesis that a change in a firm’s collateral value will have a lower impact

on its investment when its reporting quality is higher. Under this hypothesis, the

effect of a change in a firm’s real estate assets is anticipated to be lower for firms with

higher reporting quality, corresponding to a negative coefficient on an interaction term

between a measure of reporting quality and a measure of collateral value.

It is routine in finance and accounting applications to use panel data like those

in Balakrishnan et al. (2014) that contain diverse firms. With such data, making

cross-firm comparisons credible often requires using a set of firm characteristics as
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conditioning information like those used in Balakrishnan et al. (2014). Which of these

firm characteristics is the key variable and which are viewed as conditioning information

will vary across applications. Clearly the variable of interest in other studies may differ

from the key variables in Balakrishnan et al. (2014), so it is important to consider

how inference methods perform for regression coefficients on a variety of predictors.

Therefore we examine inference performance across all coefficients rather than focus

solely on the coefficient of interest from Balakrishnan et al. (2014).

Our simulation data start from a baseline firm-level panel that replicates the final

column of Table 2 in Balakrishnan et al. (2014) which gives results from the regression

of capital expenditure scaled by lagged assets (yit) on a vector of nine variables, xit.

These explanatory variables are constructed from the following firm characteristics.

RE VALUE is the market value of the firm’s real estate assets as of year t scaled by

the lagged book value of assets. STATE INDEX measures the growth in real estate

prices in the firm’s state from 1993 until year t. FRQ is one of the Balakrishnan et al.

(2014) measures of reporting quality in year t − 1. CASH FLOW is the year t cash

flow from operations scaled by the lagged book value of assets. Q is the market value

of assets in year t− 1 divided by their book value. LN MVE is the log of market value

of equity in year t− 1. LN AGE is the log of the number of years a firm has a record

in Compustat as of year t − 1. LEVERAGE is the sum of short- and long-term debt

divided by the book value of assets at year t−1. The product of FRQ and RE VALUE

(FRQ×RE VALUE) is also included and is the key regressor for Balakrishnan et al.

(2014).

We use data on 21,290 observations spread across 2159 firms with the number of

observations per firm ranging from 3 to 17. With this data, we estimate a standard

additive fixed effects model with firm and time effects

yit = x′itβ + αi + δt + εit

and then estimate a model for the εit that allows for a rich, realistic spatial-temporal

covariance structure that accommodates correlation not only between firms within a

given time period and between time periods within a given firm but also between

different firms in different time periods. For example, the model allows that the re-

gression error to firm i in year t is correlated with the shock for some other firm(s) j



38 TIMOTHY CONLEY, SILVIA GONÇALVES, AND CHRISTIAN HANSEN

in year s 6= t. We provide specific details about the model for the εit in an additional

supplementary appendix.

We then generate m = 1, ..., 1000 simulated data sets by using the values of xit,

the firm identifiers, and the time identifiers from the actual data coupled with the

associated point estimates from the data of their parameters, β̂, {α̂i}ni=1, and {δ̂t}Tt=1

to form the linear index x′itβ̂ + α̂i + δ̂t.
19 We then generate ymit = x′itβ̂ + α̂i + δ̂t + εmit

where the εmit are drawn from a model for εit estimated using the data. We thus know

the true values of the parameters on the covariates xit in the simulated data are β̂.

Before turning to the results, we wish to remind the reader that the point of the

exercise is to illustrate the performance of different inferential procedures in a variety

of settings, not to comment specifically on the particular analysis of Balakrishnan

et al. (2014) from which we took the data. Researchers will often have data whose

composition and dependence structure is analogous to our data from Balakrishnan et al.

(2014) but details will differ across studies so a procedure that performs well across a

variety of different stochastic settings will be valuable. We examine how procedures fare

in this regard by looking at their behavior across all the different variables used in the

original study, which captures reasonable variation in the properties of the underlying

data. There are some procedures that perform reasonably well across the different

variables and others that do not. Focusing on or drawing attention to the one or two

columns that happened to have been of interest in the original paper would present a

misleadingly favorable impression of the performance of many of the procedures. We

caution the reader against focusing on any small number of columns when trying to

extract generalizable information from the results.

We now turn to evaluating the performance of various procedures for conducting

inference. We first report performance in terms of size of tests as the reason we are in-

terested in accounting for dependence in making inferential statements is to have these

statements accurately reflect the uncertainty with which parameters are estimated.

19Our simulation conditions on the set of observed regressors from Balakrishnan et al. (2014) and

thus corresponds to a fixed design. The published formal theory for clustered standard errors with a

small number of groups in Hansen (2007) and Bester et al. (2011) that provides convergence to simple,

standard limiting distributions does not apply in the fixed design case. These formal results could

be extended to the case of a fixed design under a suitable modification of the design homogeneity

condition and appropriate modification of technical conditions.
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We report results for size of tests based on different inferential procedures in Sections

4.1-4.5. We then turn to point estimation properties (mean-squared error) and power

in Section 4.6 as, conditional on having reliable assessments of uncertainty, we would

like to use procedures that are as informative as possible about the underlying model

parameters.

4.1. Clustering Procedures. We start by considering the performance of various

one- and two-way clustering procedures. To perform the evaluation, we first estimate

models of the form

yit = x′itβ + FEi,t + εit (14)

using the simulated data for different fixed effects structures FEi,t discussed later. We

then estimate standard errors using a variety of one-way clustering schemes (with G

clusters) and two-way clustering schemes (with G1 clusters in the first dimension and

G2 clusters in the second dimension). When using one-way clustered standard errors,

we remove the mechanical bias by rescaling as discussed in Section 3.2 and then use

critical values from a tG−1 distribution as justified in Bester et al. (2011). We follow

an ad hoc rule-of-thumb when basing inference on two-way clustered standard errors

and use critical values from a tmin{G1,G2}−1 distribution.20

The key choice in doing inference based on clustered standard errors is how to form

the groups of observations that define the clusters. Recall that a central condition

underlying the validity of inference based on clustered standard errors is that the

contribution of covariances between observations from different clusters is negligible

relative to the overall variance of the estimator. Heuristically, this condition requires

that clusters are broad enough so that unobservables for most observations within

a given cluster are essentially uncorrelated with unobservables of observations from

other clusters. Justification of this condition will typically become more plausible as

20We also make an ad hoc adjustment to the two-way clustered standard errors to counteract the

mechanical bias. Computationally, two-way clustered standard errors based on groups g1 and g2 with

respectively G1 and G2 clusters can be computed as V̂g1+V̂g2−V̂g1×g2 where V̂g is the one-way clustered

variance estimator based on clusters in g. For our simulation, we rescale each term in this expression

and use V̂two−way = G1

G1−1 V̂g1 + G2

G2−1 V̂g2 −
G1G2

G1G2−1 V̂g1×g2 . This rescaling essentially corresponds to

what one would obtain if using Stata to compute each term in the formula for two-way clustering with

default scaling. Another sensible alternative would be to use minG1,G2

minG1,G2−1 (V̂g1 + V̂g2 − V̂g1×g2). It may

be useful to further explore finite sample adjustments for use with two-way clustering.
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the number of observations within each cluster increases. As examples, take three of

the schemes we consider in the simulation experiment: clustering by state, two-way

clustering by state and time, and clustering by eight-year time blocks. Note also that

two-way clustering by state and time allows for more general correlation structures

than clustering by state while clustering by eight-year time blocks is neither more nor

less general than either other strategy.

When we cluster by state, all observations on all firms in the same state across all time

periods are included in the same cluster. This grouping accommodates very general

types of within-firm inter-temporal correlation in unobservables as well as correlations

in unobservables across firms within the same state both within the same time period

and across time periods. Such correlation could be induced, for example, by firms

in the same state facing similar time-varying legal environments due to differences in

state laws. This structure seems quite general and indeed allows substantial correlation

within and across firms, but suppose that there are also industry-specific shocks that

affect different industries differently and perhaps interact with the time-varying legal

environment. Such shocks would induce correlation in unobservables across all firms in

a given industry. If industries were largely concentrated within state boundaries, then

clustering by state would allow for such shocks; but if firms from the same industry

are spread across many different states, the assumption that spillovers in correlations

across cluster boundaries are negligible would likely be violated and lead to a failure

of standard errors clustered by state being able to adequately capture the impact of

dependence in the data on uncertainty about parameter estimates.

Now suppose we use two-way clustering by state and time. In this case, all obser-

vations on all firms in the same state across all time periods are included in the same

cluster, and all observations in the same time period are also included. We can thus

handle very general types of within-firm inter-temporal correlation as well as correla-

tions across firms within the state both within the same time period and across time

periods as before, but we are also allowing any firm in the same time period to be

correlated to any other firm in the same period. Allowing for contemporaneous corre-

lation among all firms allows us to accommodate industry specific shocks that affect

different industries differently (as well as more general macroeconomic shocks), as long

as these shocks are not correlated over time. Such industry shocks would be problem-

atic for one-way clustering by state. However, if industry shocks were inter-temporally
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correlated, they would produce correlation between firms in the same industry across

different time periods. Once again, this correlation would generally lead to a failure of

two-way clustering by state and time to capture the impact of dependence in the data

on uncertainty about parameter estimates unless industries were concentrated within

states where inter-temporal dependence is allowed.

Finally, consider clustering by eight-year time blocks. In this case, all observations

within the first eight years of the sample are included in one cluster, all observations

in the next eight years are included in another cluster, and so on. Relative to the

two previous strategies, this clustering scheme imposes stronger restrictions on depen-

dence within firms in the same state but much weaker restrictions on cross-sectional

correlation. This strategy will allow not only for correlation between firms in the same

time period but also for correlation between different firms in different time periods

within the eight-year block. Allowing for this additional dependence between differ-

ent firms in different time periods comes at the cost of needing further restrictions on

inter-temporal correlation. To see this, note that in the first two strategies, depen-

dence between unobservables between say firm i at time t and firm i at time s are

allowed regardless of t and s, while this dependence would be neglected in the last

strategy whenever t and s do not belong to the same 8 year block. Neglecting this

inter-temporal correlation will have relatively little impact when dependence is weak

as would be implied, for example, by a first-order autoregressive process with small

slope coefficient.

Whether it is more palatable to restrict inter-temporal correlations as in the clus-

tering by 8 year time blocks strategy or restrict the spatio-temporal correlations as in

two-way clustering by state and time is not obvious and depends on which source of

correlation is stronger. It is important to note though that spatial correlations tend

to accumulate much faster than temporal correlations due to generally larger cross-

sectional sample sizes and that temporal correlations are easier to model and remove

via pre-whitening methods such as taking first-differences or quasi-differences in the

time series.21 For these reasons, we believe that many researchers may wish to consider

21For quasi-differencing, one would first need to estimate a low-order autoregressive model. A

simple estimation procedure would be to assume that every individual time series follows the same

autoregressive model and estimate the coefficients from pooled OLS using residuals from the baseline

model, (14) in our simulation example.
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structures that allow quite general spatio-temporal dependence as in the clustering by

8 year time block strategy at the cost of needing stronger restrictions on inter-temporal

correlations.

A further consideration in choosing a cluster structure is that as the number of

clusters decreases, clustered standard error estimators of any variety become more

variable. To accommodate high variability standard error estimators, the critical values

used in conducting inference need to be appropriately set and will generally differ from

the usual standard normal cutoffs as discussed in Section 3.2. For one-way clustered

estimators, a sensible guide that can be theoretically justified is to use critical values

from a t-distribution with degrees of freedom equal to the number of clusters minus

one; see, for example, Bester et al. (2011). For multi-way clustering, a somewhat ad

hoc rule-of-thumb motivated by the previous statement is to use critical values from a

t-distribution with degrees of freedom equal to the minimum of the number of clusters

along each dimension minus one.22 Looking at our three examples, we have 49 states

and 17 years represented in the data. For clustering by state, we thus have 49 clusters,

two-way clustering by state and year has 49 clusters in the state dimension and 17 in the

time dimension, and clustering by eight year time block has two clusters.23 Looking at

5% level tests, we would thus use critical values of 2.01, 2.12, and 12.71 respectively for

standard errors clustered by state, two-way clustered by state and time, and clustered

by eight year time block respectively. Note that with small numbers of clusters, these

critical values differ sharply from the usual standard normal critical values and use of

the standard normal values which do not account for estimation error in the standard

error estimator itself could lead to a dramatic overstatement in the precision with which

parameters can be determined.

22As Stata is commonly employed among applied researchers, the authors wish to stress that, to

their knowledge, there is no official Stata code at present for implementing multi-way clustering,

though there are user-provided packages. We also remind the reader that the theory with two-way

clustering with a small number of groups is not developed. We suggest caution when trying to use

black-boxed multi-way clustering unless the number of clusters in all dimensions is large. We also note

that one might wish to adopt the bias-correction and degrees of freedom adjustments for clustering

estimators suggested in Imbens and Kolesar (2012) which build upon ideas from Bell and McCaffrey

(2002). As there are already many moving parts and estimators being considered in this review, we

have chosen not to consider these adjustments.
23We form one cluster from the first nine years and the second from the last eight years.
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Fixed Effects Choices. A second choice that needs to be made is how to structure

the fixed effects. This choice should of course reflect a researcher’s beliefs about impor-

tant sources of unobserved heterogeneity but also needs to be chosen carefully with the

type of clustering structure that will be employed in mind. The latter consideration

often seems to be ignored in practice. Recall that the within transformation for re-

moving fixed effects induces dependence between observations that belong to the unit

defined by the fixed effect. If a fixed effect is defined that crosses cluster boundaries,

removing this effect by estimating the unobserved component or equivalently subtract-

ing the group-level mean defined by the fixed effect category will lead to correlation

of observations across clusters even if they were originally independent. For example,

estimating industry fixed effects would induce correlations across clusters defined by

state if industries are present in multiple states and would induce correlations across

clusters defined by time blocks.

To further illustrate this point, recall that the error terms for firm i at time t and

firm i at time s after removing a firm fixed effect are defined as εit− ε̄i and εis− ε̄i where

ε̄i = 1
T

∑T
τ=1 εiτ . Note that εit − ε̄i and εis − ε̄i are correlated generally for all t and

s due to the presence of ε̄i. If one used the eight-year time blocks clustering strategy

discussed above, we would then have correlation across clusters by construction. In

this case, to eliminate the potential for induced correlation, one could instead define

a new fixed effects structure by including a set of firm by eight-year time block fixed

effects.24 This structure nests a model with just firm fixed effects and produces a

within transformation that does not spill across groups. Note that this structure also

removes any unobserved components at the firm by eight-year time block level which

may also serve to lessen the unobserved dependence in the data and, in cases where

one is concerned that such error components may be related to observed explanatory

variables, lessen concerns about endogeneity of observables. Finally, note that the

problem of inducing correlation across clusters due to fixed effects crossing cluster

boundaries is lessened as the number of observations used to estimate the fixed effect

becomes large as the induced correlation generally shrinks proportionally with the

number of observations used to estimate the fixed effect. Therefore this issue is much

24We use “X by Y fixed effects” to denote including a full set of fixed effects for groups formed by

taking all possible combinations of X and Y or equivalently for including fixed effects for each category

of X, fixed effects for each category of Y , and the full set of interactions between these effects.
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less likely to be a concern for time fixed effects than for firm, industry, or cross-sectional

group fixed effects in many firm-level panels due to relatively short time spans versus

much larger cross-sectional dimensions.

In our simulation, we consider one-way clustered standard errors estimated with

clustering by (1) firm, (2) state, (3) one-digit SIC code, (4) two-digit SIC code, (5) size

category, (6) eight-year time block, (7) six-year time block, (8) four-year time block,

and (9) two-year time block. We also consider two-way clustering based on (10) firm

and year, (11) state and year, (12) one-digit SIC code and year, and (13) two-digit SIC

code and year.25 We chose these different structures to encompass clustering strategies

that are common in empirical practice and to illustrate some less common strategies

that we thought seemed ex ante plausible for capturing complex dependence structures.

This set of clustering approaches is certainly not exhaustive but we think offers a rich

enough set to provide a useful exploration of different possibilities in this example.

The fixed effects structures we consider are motivated by the cluster structures de-

fined above. In particular, we consider fixed effects structures that respect cluster

boundaries in addition to using just the conventional firm and time fixed effects. For

each of the one- and two-way clustering schemes, we consider the use of additive firm

and year fixed effects. With clustering by state and two-way clustering by state and

year, we also consider a specification with a full set of state by year fixed effects in addi-

tion to firm fixed effects. With clustering by one-digit SIC code and two-way clustering

by one-digit SIC code and year, we consider two additional fixed effects specifications:

one with a full set of one-digit SIC code by year fixed effects in addition to firm fixed

effects, and the other with a full set of two-digit SIC code by year fixed effects in

addition to firm fixed effects. With clustering by two-digit SIC code and two-way

clustering by two-digit SIC code and year, we consider an additional specification with

a full set of two-digit SIC code by year fixed effects in addition to firm fixed effects.

With clustering by size category, we also consider a specification with a full set of size

category by year fixed effects along with firm fixed effects. In addition to the additive

firm and year effect specification, we also consider a specification with two-year time

block by firm fixed effects as well as year fixed effects, a specification with four-year

25Two-way clustered covariance matrix estimators are not guaranteed to be positive semi-definite.

We use the ad hoc adjustment suggested by Cameron et al. (2011) to ensure that covariance matrices

estimated by two-way clustering are always positive semi-definite.
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time block by firm fixed effects as well as year fixed effects, a specification with six-year

time block by firm fixed effects as well as year fixed effects, and a specification with

eight-year time block by firm fixed effects as well as year fixed effects when clustering

by two-year time block, four-year time block, six-year time block, and eight-year time

block respectively.

Table 1 contains sizes for 5% level tests based on clustered standard error estimators

obtained in the simulated data. Panel A of the table gives results using one-way

clustering, and Panel B gives results using two-way clustering. The first column of the

table indicates the level of clustering, the second column lists the number of clusters

minus one, and the third column gives the fixed effects structure. The remaining

columns give the size of t-tests for the coefficient associated with each of the firm and

time varying variables in the data about which one might wish to perform inference. In

order to highlight specifications where rejection proportions are close to 5% uniformly

across coefficients, we use bold font for rows in which the maximum rejection frequency

is 10% - i.e. rows in which the maximum distortion of the 5% test is 5 percentage points.

Perhaps the most striking feature in Table 1 is the tendency for tests to have poor

performance in uniformly controlling size across the full set of covariates. Of all the

strategies considered, only two are successful at producing tests in this simulation which

keep distortions at smaller than .05 uniformly across variables. These are clustering

by eight year time block with firm by eight year time block fixed effects and year fixed

effects and clustering by two year time block with firm by two year time block fixed

effects and year fixed effects. Note that both of these use fixed effects that respect

cluster boundaries. If one wishes to restrict attention to procedures that seem to

control size in the sense of keeping size of 5% level tests near to 5% or smaller, only

the approach that clusters by two year time block and takes out firm by two year time

block fixed effects and year fixed effects is successful. Having a procedure that controls

size uniformly across the columns in this table is important as, in practice, a researcher

generally does not know the stochastic properties of variables of interest ex ante and

would thus like to have a procedure that performs well regardless of the identity of the

underlying covariate of interest.

It is also interesting to note that none of the two-way clustering approaches performs

uniformly well. The difficulty in obtaining good performance for inference based on

two-way clustering in finite samples is also highlighted in Villacorta (2015) who focuses
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on theoretical difficulties in obtaining good behavior in samples where either the cross-

sectional or time series dimension is not very large. We also remind the reader of

the undesirable feature of usual uses of two-way clustering which allows observations

in unit i at time t to be correlated to observations in unit j at time t but rules out

correlation between observations in unit i at time t and unit j at time s for s 6= t. This

implied correlation structure seems inappropriate for many real-world settings.

The poor performance of the majority of clustering approaches in this setting can

be explained by first noting that the data upon which we base the simulation de-

sign shows evidence of complicated cross-sectional and intertemporal correlation. The

cross-sectional correlation is not perfectly captured by state, industry, or any other

single factor upon which it would be easy to cluster. There is also intertemporal cor-

relation not just within firm but across firms in different time periods. Clusters that

accommodate this rich structure are necessarily large and, due to the complexity of the

cross-sectional patterns, involve forming clusters that keep all cross-sectional observa-

tions together and split only on the time dimension, which results at best in a small

number of clusters.

The use of a small number of clusters then brings about a second complication. Cur-

rent approaches to showing good theoretical properties of inference based on clustered

standard errors rely either on having a large number of approximately independent

clusters or on having a small number of clusters with many observations and a form of

within-cluster homogeneity.26 Specifically, with a small number of clusters and letting

Xg denote the elements of the design matrix corresponding to cluster g after partialling

out any nuisance variables such as fixed effects, we need X ′gXg ≈ X ′hXh for all g and

h. It is important to note that having X ′gXg ≈ X ′hXh for all g and h will be hard to

satisfy when there are large differences in the numbers of observations across clusters.

This type of homogeneity also seems very unlikely in settings where there is substantial

heterogeneity among observations and clusters are formed by grouping similar obser-

vations together. Carter et al. (2013) provides further discussion of these issues and

offers a measure of cluster heterogeneity that is meant to capture relevant deviations

26With a large number of clusters, one does not need homogeneity as the heterogeneity “averages

out.” However, it is not clear what a large number is in practice and the number will depend on the

actual extent of heterogeneity with more heterogeneity requiring correspondingly more clusters. See

discussion in Carter et al. (2013) and Mackinnon and Webb (2016).



47

from the condition X ′gXg ≈ X ′hXh for all g and h. We note that concerns about cluster

heterogeneity would tend to favor forming clusters from time blocks or similar parti-

tions where the number of observations and composition of firms within cluster can be

kept relatively controlled.

A simple, ad hoc device to assess the degree of design heterogeneity across clusters

is to regress the squared values of the covariates onto a complete set of cluster dummy

variables. One could then look at an F-statistic for testing the null that the squared

values of the covariates are not predicted by cluster identity. That is, for each right-

hand-side variable of interest xj, one could estimate the model

x2j,it = d′itγ + vj,it

where dit is a complete set of cluster membership dummies and test that γ = 0.

Rejecting γ = 0 then suggests that cluster identity predicts the value of the squared

observable which indicates that the observable is not homogeneous across clusters.

While only valid under restrictive and somewhat unrealistic conditions, such an exercise

is still informative about the degree of design heterogeneity in the data.

We have implemented this diagnostic using the covariates from the Balakrishnan

et al. (2014) data. Looking at one covariate at a time, the p-value associated with

testing the null hypothesis of variance homogeneity - that cluster identity does not

predict the squared covariate - is smaller than .02 across all variables, cluster structures,

and fixed effects structures considered with only five exceptions; and in every case,

the p-value associated with this null is smaller than .02 for at least eight of the nine

potential variables.27 Overall, the evidence seems to contradict the hypothesis of cluster

homogeneity and suggests that one should be hesitant to trust inference based on

clustered standard errors with a small number of groups in this data.

It is also worth noting that if one excludes consideration of the age variable (LN AGE),

there are a few additional approaches that control size reasonably. In particular, both

rows relating to clustering by eight-year time block do well. The other strategies based

27The exceptions are for LEVERAGE with eight-year time block clusters and either fixed ef-

fects strategy, LEVERAGE with six-year time block clusters and only firm and year fixed effects,

FRQ×RE VALUE with six-year time block clusters and firm by six-year time block plus year fixed

effects, and LEVERAGE with four-year time block clusters and firm and year fixed effects. The full

set of results is available in the supplementary appendix to this paper.
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on clustering by time blocks are also reasonably effective as long as fixed effects are

removed in a way that does not cross cluster boundaries. We note that the age variable

is particularly problematic as it is clearly trending within firm, and one may reason-

ably wish to exclude inference on coefficients of trending variables which is known to

be problematic. Noting this also helps explain the success of the approach that partials

out firm by two-year time block fixed effects as this approach will essentially remove

any systematic firm-specific trends from the variables in the model that vary at both

the firm level and over time.

4.2. Bootstrap Critical Values. Size of tests based on bootstrapped critical values,

as described in Section 3.4, are provided in Tables 2 and 3. The results in Table 2 are

based on generating bootstrap samples via the cluster wild bootstrap, and the results

in Table 3 generate bootstrap samples via the overlapping blocks bootstrap.

Table 2 reports size using t-statistic critical values obtained via the cluster wild

bootstrap following Cameron et al. (2008) using the Mammen (1993) weights described

in Section 3.4. In each simulation replication, we form 2000 bootstrap samples from

which bootstrap t-statistics are obtained. We then use these 2000 bootstrap t-statistics

to estimate the critical value to use in constructing 5% level tests. The first column of

Table 2 provides the type of clustering used in estimating standard errors in the data

and in the bootstrap samples. This column also describes the independence structure

induced in the bootstrap data by generation of the wild bootstrap weights. The second

column in Table 2 reports the fixed effects structure maintained in estimating the

model. The remaining columns of Table 2 provide rejection proportions for t-tests

performed using the critical values estimated in the bootstrap simulations.

Overall, the performance of the cluster wild bootstrap is on par or inferior to the clus-

tering approaches described in Table 1. The procedure does not control size uniformly

across regressors for any specification. Even if one excludes consideration of LN AGE,

only one scheme controls size to be at most 10% for a 5% level test: eight-year time

block clustering with fixed effects for year and eight-year time block by firm. Given

the evidence for substantial across-group heterogeneity for most grouping structures

discussed in Section 4.1, this performance is in line with results in Mackinnon and

Webb (2016) and Canay et al. (2018) that suggest the cluster wild bootstrap performs

poorly with heterogeneous groups.
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Table 3 presents analogous results for the overlapping blocks bootstrap with a block

size of three. Due to the difficulty in implementing the overlapping blocks bootstrap

in unbalanced panels with complex fixed effects structures, we only consider the per-

formance of the overlapping block bootstraps on a balanced subset of our calibrated

firm-level panel where the panel is balanced by dropping all firms that are observed

for less than the entire time span of 17 periods. This subset contains approximately

10% of the original firms and 17% of all firm-year observations. We then use only

this balanced subset in each simulation replication and apply the overlapping blocks

bootstrap to generate 2000 bootstrap samples. We use these bootstrap samples to

bootstrap t-statistics from which we estimate critical values. The first two columns in

Table 3 respectively report the group structure which was used to estimate standard

errors used in constructing t-statistics and the fixed effects structure. The remaining

columns report size of 5% level tests.

The overlapping blocks bootstrap results are more promising than those for the

cluster wild bootstrap in our simulation. Size is controlled in cases where clustering

is by time blocks with fixed effects that do not cross group boundaries and when

clustering is by eight-year-time block with just firm and year fixed effects included.

Results reported in the Supplemental Appendix suggest that this good performance

relative to the cluster wild bootstrap is not driven solely by using the balanced panel

subset of firms. We obtain similar results to those in Table 2 when the cluster wild

bootstrap is applied using the same balanced panel that we use with the overlapping

blocks bootstrap.28 It is worth noting rejection probabilities tend to be less than 5% in

cases where size is controlled using critical values obtained by the overlapping blocks

bootstrap. We return to this issue in Section 4.6.

4.3. Sample-Splitting Procedures. In the present context, an FM-style approach

proceeds by positing a model with common parameters of exactly the form given in

(14). One then obtains estimates of the common parameters of interest in β by following

a multi-step procedure. First, one estimates a model with group-specific parameters

28We also report additional results for the overlapping blocks bootstrap with block size of two in

the Supplemental Appendix. These results are quite similar to those obtained with the block length

of three.
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of the form

yit = x′itβg + FEi,t,g + εit (15)

where g = 1, ..., G denotes a group of observations used to estimate {β̂g}Gg=1. Of course,

estimates of the parameters of (15) can be obtained by splitting the data into groups

and estimating the parameters of the model separately group-by-group. One then

obtains a point estimate of the common parameter of interest, β, by taking the sample

mean of the β̂g:

β̂ =
1

G

G∑
g=1

β̂g.

Similarly, an estimator of the sampling variation of β̂ is given by the usual estimator

of the sampling variance of a sample mean estimated from G observations:

S =

(
1

G− 1

G∑
g=1

(β̂g − β̂)(β̂g − β̂)′

)
/G.

Ibragimov and Müller (2010) show that inference for β(j), where β(j) is a scalar

element of β, about the null hypothesis H0 : β(j) = β0(j) can proceed using the usual

t-statistic

tj =
β̂(j)− β0(j)

S
1/2
j,j

where Sj,j is the jth diagonal element of S along with critical values from a tG−1 distri-

bution under reasonably general conditions, though the inference will be conservative

when there is heterogeneity across groups. These results are extended to somewhat

more general problems of testing one dimensional hypotheses in Ibragimov and Müller

(2016). Canay et al. (2017) uses β̂ and S in conjunction with a permutation inference

procedure to develop a valid inference procedure that allows for general joint hypothesis

testing and is not (asymptotically) conservative.

These approaches rely on a similar set of conditions. The key requirement is that the

β̂g are approximately independent across groups which is motivated by exactly the same

considerations as the condition underlying the use of clustered standard errors that

covariances between observations across clusters provide an asymptotically negligible

contribution to the overall variance of an estimator. The intuition for ensuring this

type of independence is identical to the intuition for choosing clusters; and as such, we
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do not restate that discussion here but refer the reader to the discussion of this point

in the preceding section.

A second condition underlying the validity of FM-style procedures is that there are

many weakly dependent observations within each group. In practice, this requirement

suggests that one will wish to use a small number of groups that each consist of many

observations. Note that this differs somewhat from the use of clustered standard errors

which would allow for a large number of small clusters under the assumption that

observations in these clusters are approximately independent. The important benefit

provided by sample-splitting is that the homogeneity assumption required for validity of

clustered standard errors with a small number of clusters may be dropped. Dropping

this homogeneity requirement broadens the set of applications under which sample-

splitting estimators will provide reliable inference and allows, for example, for settings

where there are quite different numbers of observations per group or where there is

substantial variability in observables across groups as found in the actual Balakrishnan

et al. (2014) data and discussed above.

We also note that the choice of group structure interacts with the fixed effects struc-

ture maintained just as the choice of grouping structure does when clustered standard

errors are used. Specifically, the key assumption of approximate independence of β̂g

across groups suggests that fixed effects should not spill across group boundaries. Keep-

ing the fixed effects from spilling over can readily be accomplished by splitting the data

into the desired clusters and then estimating the desired model. For example, if one

wished to allow firm-specific effects and thought an appropriate grouping scheme would

form groups by taking groups as two-year time blocks, estimation could proceed by first

splitting the data into two-year time blocks and then running separate regressions that

include firm-specific effects within each two-year time block. Note that this is equiva-

lent to including a full set of firm by two-year time block fixed effects in the original

model as FEi,t,g.

We illustrate the inferential properties of FM-style procedures by applying them in

our simulated data. We assume a baseline model given by

yit = x′itβ + αi + δt + εit (16)

where αi and δt are respectively firm and time unobserved heterogeneity which is

allowed to depend arbitrarily on observed variables and β are parameters of interest
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as in the preceding section. As with the application of clustered standard errors, we

consider a variety of grouping (sample-splitting) schemes. Specifically, we consider

groups formed by (1) state, (2) one-digit SIC code, (3) firm size categories, (4) eight-

year time blocks, (5) six-year time blocks, (6) four-year time blocks, and (7) two-year

time blocks. When using groups based on state, one-digit SIC code, and two-year

time blocks, we also consider the permutation inference procedure of Canay et al.

(2017).29 Note that doing FM in this model with different group structures effectively

corresponds to different sets of fixed effects.30

We provide simulation results based on FM in Table 4. The results shown in Table 4

are strikingly different than those in Tables 1-3 in that most of the considered schemes

appear to control size relatively well for tests regarding the coefficient on all variables.

In particular, all procedures based on splitting in the time series control size across all

coefficients. This good performance is likely due to the fact that the procedures which

group on time blocks allow for very flexible patterns of cross-sectional/spatial correla-

tion and weak spatio-temporal dependence. The presence of firm by time block fixed

effects serves to effectively remove any low or moderate frequency time-varying firm-

specific effects that might lead to stronger intertemporal dependence. Finally, good

inferential properties are retained despite the strong heterogeneity across groups briefly

described in the previous section due to the robustness of sample-splitting procedures

to heterogeneity in both observables and errors demonstrated in Ibragimov and Müller

(2010, 2016) and Canay et al. (2017).

Before concluding this section, it is important to note that the apparent size-control

of FM grouping on state or one-digit SIC code is a fortuitous coincidence in that nei-

ther grouping by state nor grouping by one-digit SIC code adequately captures the

29Note that the baseline procedure in Canay et al. (2017) is based on a permutation distribution

that will have 2G points of support and thus a minimum p-value of 1/2G−1. We thus need at least

six groups to test at the 5% level if we wish the result of the test to be informed by the data.
30Specifically, grouping by state, by one-digit SIC code, by firm size category, by two-year time

block, by four-year time block, by six-year time block, and by eight-year time block are effectively

including firm effects and a full set of state by year effects, firm effects and a full set of one-digit SIC

code by year effects, firm effects and a full set of size category by year effects, year effects and a full

set of firm by two-year time block effects, year effects and a full set of firm by four-year time block

effects, year effects and a full set of firm by six-year time block effects, and year effects and a full set

of firm by eight-year time block effects, respectively.



53

dependence in the data. Evidence for this is provided in the modest size-distortions

evident in the permutation inference procedure of Canay et al. (2017) which is correctly

sized, not conservative, in the presence of heterogeneity across groups. However, with

the FM procedure, the impact on specifying groups that fail to capture the correlation

structure is essentially offset by the conservativeness of the FM procedure due to het-

erogeneity in the groups. This behavior is likely peculiar to this specific example, and

one should not infer that these two forces will offset in different settings with groups

specified in a way that does not adequately account for sources of unobserved residual

dependence.

4.4. Sensitivity Analysis. In the preceding sections, we have tried to provide in-

tuition into the key features underlying group choice for use with clustered standard

error estimators, Fama-MacBeth estimators, and the bootstrap. The key in all cases is

that groups are chosen in such a way as to capture important directions of correlation

among observations so that dependence between observations that belong to different

groups makes only a small contribution to the total sampling variation of the estimator

of interest. In practice, we believe that this requirement suggests that one will typically

wish to use a small number of quite large groups when doing inference to minimize the

potential for neglected sources of correlation and spillovers across group boundaries.

While the advice to use a small number of groups that consist of many observations

and capture important directions of dependence is sensible, it is hard to know how to

choose such groups in practice. All of the grouping strategies considered in our simula-

tion experiment with the possible exception of grouping by state, rely on constructing

a small number of groups made up of many observations. We also see that inferential

performance, as measured by size of tests, depends non-trivially on the grouping struc-

ture one assumes when conducting inference. This dependence means that the choice

of grouping structure can have important practical implications.

One simple possibility to group selection for inference is to not choose just one

structure but rather to report inferential results based on several different sensible

group structures. This type of sensitivity analysis is analogous to the usual procedure

in empirical research of trying many different specifications to assess the sensitivity

of conclusions about the parameter of interest to model specification. One might

also worry about the strength of a conclusion that depends sensitively on which group
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structure is used when conducting inference. One could formalize this to a requirement

that a finding not be deemed significant unless it is significant across each of a variety

of grouping structures. Such a procedure would equate to using the union of confidence

intervals across different schemes as a confidence region for the parameter of interest

and would thus be conservative by construction under the assumption that at least one

of the structures considered adequately captured the dependence in the data.

We consider such a procedure in the row labeled “Sensitivity” in Table 5. To obtain

these results, we consider inference based on the conventional clustered standard error

estimator but consider clustering based on firm, state, one-digit SIC code, size category,

or four-year time block. With clustering based on four-year time block, we include a full

set of firm by four-year time block fixed effects and year fixed effects. In all other cases,

we use just firm fixed effects and year fixed effects. We then reject a null hypothesis

only if the hypothesis would be rejected based on each of the five procedures. In the

simulation, this procedure does indeed control size in the sense of producing tests with

rejection rates less than the nominal level of 5% across all variables considered, they

are undersized. However, the test is quite conservative as expected, with size uniformly

substantially below the nominal level.

4.5. Ad Hoc Group Selection. Rather than conducting sensitivity analysis or sim-

ply choosing some a priori plausible structure, one may wish to use the data to try to

infer an appropriate clustering structure. Traditionally, clustering and grouped data

inference procedures were advocated in settings where assuming independence across

cross-sectional sampling units and thus forming clusters at the unit of observation

seems natural; see Liang and Zeger (1986) and Arellano (1987). Fama and MacBeth

(1973) were also chiefly interested in returns regressions where the assumption of a

lack of intertemporal correlation is natural and thus forming clusters by grouping by

time provides a natural grouping with roughly independent groups. In these settings,

the choice of grouping structure is thus a non-issue and little attention was paid to

the choice of grouping strategy. The more recent literature such as Vogelsang (2012),

Ibragimov and Müller (2010), Bester et al. (2011), Ibragimov and Müller (2016), and

Canay et al. (2017) has advocated the use of grouped data based inference strategies

in more general dependent data settings, but little work has been done on providing

serious, data-dependent choice of group structure in these more general settings. One

exception is Ibragimov and Müller (2016) which provides a testing procedure that can
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be used to test the adequacy of one grouping structure with a larger number of clusters

to another with a smaller number of clusters. While useful, this procedure does require

maintaining the hypothesis that the grouping structure with a small number of clusters

is appropriate and allows only for the comparison of this maintained structure against

one alternative with a large number of groups. Exploring data-dependent group choice

is definitely an area that calls for further additional research.

As a concrete suggestion, we consider an ad hoc data-dependent procedure for choos-

ing a grouping strategy. We first note that spatial dependence among observations in

many contexts, such as firm-level data, may operate along many dimensions simultane-

ously. Thinking about all the potential directions along which spatial correlation can

operate and forming groups that split the data along cross-sectional dimensions that

appropriately capture this dependence is thus challenging. It is, however, much easier

to think about and model time series dependence. We thus choose to form groups that

split only along the time series dimension. This treatment mirrors the original motiva-

tion for the procedure in Fama and MacBeth (1973) and also underlies the approaches

for inference in spatially and temporally correlated panels considered in Driscoll and

Kraay (1998) and Vogelsang (2012). Unlike Fama and MacBeth (1973), whose focus

on returns motivates an assumption of independence across time, we do not consider

forming groups from individual cross-sections as intertemporal independence seems im-

plausible in many accounting and finance contexts. We also do not wish to use large

T approximations as in Driscoll and Kraay (1998) and Vogelsang (2012). Rather, we

wish to use the intertemporal dependence structure in the data to guide our choice of

groups.

For our ad hoc group selection procedure, we first estimate the linear model (16) by

OLS and take the residuals from this regression. We then use these residuals to form

the score for each covariate by multiplying the within transformed covariates to these

estimated residuals.31 With nine right-hand-side variables in the model, this operation

gives us nine score vectors, one for each variable. We then collapse each of these vectors

to a time series by taking the within time period means of each vector which results in

a T × 1 vector of within-time-period means for each covariate. We treat these T × 1

vectors as independent time series, and estimate the first three autocorrelations for

31With time and firm fixed effects, the within-transformed xit is x̃it = xit − x̄i − x̄t + x̄ where x̄i

is the within firm mean of x, x̄t is the within time period mean of x, and x̄ is the overall mean of x.
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each series. We then use these autocorrelation estimates to benchmark the strength of

the time series correlation by looking at 5% level tests for the autocorrelations being

equal to 0 assuming iid sampling of the time series.32 We then take the maximum lag

length at which the hypothesis is rejected across all variables. If this maximum is one

or the hypothesis is never rejected, we group by two-year time blocks. If the maximum

is two, we group by four-year time blocks; and we group by six-year time blocks if the

maximum is three.33 We use FM-style inference as design heterogeneity seems likely

in this application.

Results based on this data-dependent procedure are reported in the row “ad hoc

Group Selection” in Table 5. As we limit ourselves to a small number of grouping

schemes which all allow for quite general cross-sectional/spatial correlation and some

weak time series dependence, it is not surprising that the resulting inference seems to

do a good job controlling size across all coefficients. Such an approach would struggle

in cases with stronger time series dependence, though a setting with strong temporal

correlation and general spatial correlation would be challenging for any procedure.

Finally, we note that the ability to form groups by splitting only in the time series and

keeping all cross-sectional observations in the same time period together is predicated

on having a long enough time series that one may form at least a few clusters by

splitting only on the time series. If one is faced with a short panel, forming groups by

splitting along the cross-section seems to be necessary to generate enough groups to

produce useful inferential statements.

4.6. Power and Point Estimation Properties. In Sections 4.1-4.5, we have con-

sidered the performance of a variety of grouped data based estimation and inference

strategies for learning about model parameters in a firm-level panel with performance

measured by size of 5% level tests. While size of tests or coverage of confidence intervals

is a primary concern when thinking about statistical inference, it is also important to

consider power and efficiency. In this section, we report results on efficiency of point

estimators underlying the procedures examined in the previous sections and report

32We ignore any concerns about incidental parameters bias, neglected dependence, and other finite-

sample problems as the procedure is ad hoc and is only meant to get a ballpark idea of the strength

of time series correlation.
33This rule results in grouping by two-, four-, and six-year time blocks in 254, 294, and 452 simu-

lation replications respectively.
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results on power of tests focusing on only the procedures that controlled size in the

simulation.

The use of different fixed effects structures means that the point estimator of the

regression coefficients underlying the results in Table 1 differs across some of the entries,

and the point estimator obtained from applying a FM-type procedure is not equivalent

to the OLS estimator of the parameters β in (15) even when the fixed effects structures

across the procedures align. The point estimators underlying the overlapping blocks

bootstrap results also differ from those obtained in the full sample as we use only the

balanced subset of firms with data available for all periods when implementing the

overlapping blocks bootstrap. It is thus instructive to consider how the use of these

different estimators impacts point estimation properties. In Table 6, we report root-

mean-squared-error (RMSE) of the OLS point estimator of each parameter obtained

under each different fixed effects structure used in Table 1, of the FM point estimator

of each parameter under each sample-splitting scheme used in Table 2, and of the OLS

point estimator of each parameter obtained under each different fixed effects structure

using only the subset of the data used in the overlapping blocks bootstrap. We note

that all of the estimators are unbiased in this example because the covariates are strictly

exogenous, so RMSE is dominated by the estimators’ variance.

The first thing to note from the RMSE results is that there are a few point estimators

that appear to be uniformly dominated. The FM-style procedure grouping by state or

one-digit SIC code performs very poorly relative to the other estimators considered.

This poor performance seems to be driven by using very heterogeneous groups, some

of which are very small, in both cases. The presence of very small groups leads to

group specific estimators with high sampling variability which significantly degrades

the estimation performance of the overall procedure; see the discussion in Remark 2 in

Section 3.3. We also see that the performance of estimators using the largest balanced

subset of the data presented in Panel B of the table is dominated by OLS using the

full sample or any of the FM estimators excepting the two previously mentioned. This

result is unsurprising as a substantial fraction of the data is discarded in forming the

underlying balanced subset.

Excluding the few clearly dominated procedures, the RMSE results are not clear

cut. We can see that, within this simulation design, there is no single procedure that

performs best across all the different variables. The lack of a uniformly dominating
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procedure is not surprising. None of the considered estimators is theoretically efficient,

and each of the observed explanatory variables exhibits different time series and spatial

dependence properties. We do see that using the most aggressive fixed effects strategy,

including a full set of firm by two-year time block fixed effects and a full set of year

fixed effects as in the rows “firm x 2 year time block, year” in Panel A and “2 year

time block” in Panel B, tends to be more variable than the less aggressive strategies.

Again, this is unsurprising given how much of the variation in the explanatory variables

is absorbed by the inclusion of these fixed effects. What is perhaps surprising is how

competitive the point estimators seem to be in this case despite the inclusion of this

rich set of fixed effects. One suspects the good performance is driven by the fact that,

with the exception of LN AGE, none of the variables exhibit strong firm-specific trends

that drive their variability and are essentially eliminated by the fixed effects. Finally,

we see that the ad hoc group selection strategy performs reasonably well in producing

a procedure with competitive sampling variation.

In Table 7, we report power for 5% level tests using the 16 procedures that did a

reasonable job controlling size in the simulation, in the sense of having size of 5% tests

uniformly smaller than 10% across the covariates in our example. These procedures are

(i) standard errors clustered by 8 year time block with firm by 8 year time block and

year fixed effects with t-critical value, (ii) standard errors clustered by 2 year time block

with firm by 2 year time block and year fixed effects with t-critical value, (iii) standard

errors clustered by 8 year time block with firm and year fixed effects with overlapping

blocks bootstrap critical value, (iv) standard errors clustered by 8 year time block with

firm by 8 year time block and year fixed effects with overlapping blocks bootstrap

critical value, (v) standard errors clustered by 6 year time block with firm by 6 year

time block and year fixed effects with overlapping blocks bootstrap critical value, (vi)

standard errors clustered by 4 year time block with firm by 4 year time block and

year fixed effects with overlapping blocks bootstrap critical value, (vii) standard errors

clustered by 2 year time block with firm by 2 year time block and year fixed effects with

overlapping blocks bootstrap critical value, (viii) FM by state, (ix) FM by one-digit

SIC code, (x) FM by 8 year time block, (xi) FM by 6 year time block, (xii) FM by

4 year time block, (xiii) FM by 2 year time block, (xiv) Canay-Romano-Shaikh by 2

year time block, (xv) sensitivity analysis, and (xvi) ad hoc group selection.
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We report results only for the coefficient on FRQ×RE VALUE as it shares the

broad properties of power for the other variables; results for the remaining covariates

are provided in the supplementary appendix. For comparability, all tests are of the hy-

pothesis that the population parameter is equal to βFRQ×RE VALUE,0 + ksFRQ×RE VALUE

where βFRQ×RE VALUE,0 is the true coefficient on FRQ×RE VALUE and sFRQ×RE VALUE

is the standard deviation across simulation replications of the OLS estimator of the

coefficient on FRQ×RE VALUE from model (14) using only firm and year fixed ef-

fects. k thus measures how many standard errors from the true parameter value the

hypothesized value is, and we consider k ∈ {−4,−3,−2,−1, 0, 1, 2, 3, 4} in Table 7.

We note that the results for k = 0 thus return the size of the test and we would like

power to increase as we move k away from 0. Thus, ideally we would see power of .05

for k = 0 and power of 1 for |k| > 0.

The results in Table 7 suggest two broad classes of inferential procedures based on

power. The first class of procedures are all of the clustering procedures with overlapping

blocks bootstrap critical values; clustering by 8-year time block with t-critical values;

and FM by state, one-digit SIC code, and eight year time block. These procedures

tend to have power that increases very slowly as one moves the alternative farther

away from the population value of the parameter. Two of these procedures are the

same two based on the FM-style procedure grouping by state or one-digit SIC code

that were highlighted previously as having poor point estimation properties in terms

of RMSE. Their high sampling variability, of course, shows up in providing tests with

relatively low power. It is also clear why clustering and FM using groups made of 8

year time blocks has low power. Grouping by eight-year time blocks corresponds to

using two clusters in this study. Using only two clusters produces very noisy estimates

of sampling variability that must be offset by using very large critical values to produce

tests that have correct size. The use of these large critical values (12.71 in this case)

then results in lower power despite the point estimators themselves not exhibiting

high-variability. It is less clear why using the overlapping blocks bootstrap critical

values uniformly results in low power. We conjecture that this is due to having a

relatively small time series to use in the bootstrap which results in a deterioration of

its performance in estimating critical values.

The other class of procedures are clustering by two-year time blocks with firm by

two-year-time-block fixed effects and year fixed effects; FM with groups made by 6,
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4, and 2 year time blocks; Canay-Romano-Shaikh by 2 year time block; sensitivity

analysis; and ad hoc group selection. Among these procedures, there is no uniform

dominance in terms of power. To illustrate, we provide power curves for each of the

9 coefficients from the simulation study in Figure 2 for four of these relatively higher-

powered procedures:34 (a) ad hoc Group Selection, (b) standard errors clustered by

two year time block with firm by two year time block and year fixed effects, (c) Canay-

Romano-Shaikh by two year time block, and (d) sensitivity analysis. Looking at just

these procedures, we see that the approach of Canay et al. (2017) controls size and tends

to have the highest power most often looking across variables. The ad hoc adaptive

procedure tends to perform similarly to Canay et al. (2017) in most cases. However,

there are cases where either of the other two procedures would be preferred to either

the Canay et al. (2017) splitting on two year time blocks or the adaptive procedure.

It is interesting that the sensitivity analysis approach is substantially undersized in all

cases but has power that tends to increase quite rapidly as one considers alternatives

farther from the true population value which leads to its overtaking other procedures

in terms of power against more distant alternatives in a handful of cases and its not

being severely outperformed in terms of power against moderate and far alternatives

across the board.

The main conclusion from this section is that neither FM with sensible groups nor

OLS with the full sample obviously dominates in terms of point estimation properties.

This lack of dominance in point estimation suggests that the main focus in deciding

on an inferential procedure should be on finding procedures that control size without

losing too much power. Among the options we consider, we have some preference

for the Canay et al. (2017) variant of FM due to its relatively good performance and

theoretical guarantees. However, all of the sample-splitting procedures that use a

small number of groups formed by splitting only along the time series seem to do well

and are competitive with the Canay et al. (2017) approach. In addition, the simple

and intuitive sensitivity approach is surprisingly competitive and may be appealing as

deciding on a single adequate grouping structure may be difficult in practice.

34We chose these four to have one method from each of the broad classes of methods considered

that have relatively high power.
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5. Concluding Comments

In this review, we provide some intuition for recent developments that have occurred

in theoretical econometrics and statistics regarding inference with dependent data,

focusing on clustering, sample-splitting, and bootstrap procedures. Recent theoretical

developments have focused less on obtaining consistent estimates of standard errors and

more on providing inferential procedures that deliver accurate inferential statements.

Several key insights arise from these theoretical developments. First, it is important

to choose inferential schemes that accommodate the dependence that is present in the

data. For clustering or sample-splitting approaches, accommodating the rich types

of dependence that are likely present in real-world accounting and finance data will

generally lead a researcher to prefer an approach that makes use of a few groups

consisting of many observations which lessens the potential for omitting important

sources of correlation.

A complication that arises when a few, large groups are used for cluster estimators

is that usual approximations to the behavior of test statistics do not work well in this

scenario. Technically, the difficulty arises due to a high degree of sampling variability in

estimating the sampling variability of an estimator of interest in this environment. De-

velopments in statistics and econometrics allow us to overcome this difficulty by appro-

priate modification of critical values. Unfortunately, these modifications rely on strong

homogeneity conditions, in the case of clustered standard error estimators, that seem

likely to be violated in many accounting and finance applications. Fortunately, this

homogeneity is not required when sample-splitting estimators, such as Fama-MacBeth,

are used. We thus advocate, as a current rule-of-thumb, the use of sample-splitting

estimators as in Fama and MacBeth (1973), Ibragimov and Müller (2010, 2016), and

Canay et al. (2017) with a small number of large groups when faced with firm-level

panel data where complicated dependence structures between observations may exist.

Bootstrap procedures seem to be challenging in the type of complicated panel data

applications we consider. Fundamentally, it is difficult to come up with a mechanism

for simulating data that captures the type of complicated dependence structure that

one would expect to exist in firm-level panel data. A widely advocated approach

in settings where clustered standard errors have been used is to use the cluster wild

bootstrap. However, to accommodate rich dependence structures, one will likely wish
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to use a small number of large clusters, in which case the validity of the cluster wild

bootstrap seems to rely on strong homogeneity conditions. A different option is to be

relatively agnostic about cross-sectional dependence and use a time block bootstrap.

This approach relies on temporal homogeneity, at least a moderate length time span,

and is difficult to implement in unbalanced panels. We anticipate that many researchers

in accounting and finance will want to work with panel data that are heterogeneous,

unbalanced, and of only moderate time series dimension and thus recommend sample-

splitting approaches relative to bootstrap methods based on the current state of the

literature.

To illustrate the procedures and provide context for our discussion, we provide sim-

ulation results in a scenario designed to mimic data from Balakrishnan et al. (2014)

that is representative of many accounting and finance applications. The simulation

evidence illustrates the potential drawback of using clustered standard errors, either

one-way or multi-way, and the bootstrap and also demonstrate the relative robust-

ness of sample-splitting techniques. The results are consistent with the advice that one

should use a small number of large groups when faced with situations with complicated

dependence coupled with the use of a FM style approach to inference. For inference

about individual regression coefficients, the simulation results are favorable to both the

FM approaches with a small number of groups and the permutation inference variant

suggested in Canay et al. (2017). We do note that a modest number of groups are

required for Canay et al. (2017) to have power. We also note that sensitivity analysis

does surprisingly well in our simulation and may be useful in many settings. The simu-

lation evidence also illustrates the practical difficulty of choosing grouping schemes that

split along cross-sectional dimensions and appropriately capture cross-sectional/spatial

dependence. This difficulty leads to our final piece of advice which is that one might

consider grouping together all cross-sectional observations and splitting only on the

time dimension in cases where there is not strong a priori reason to believe there is

some type of independence among cross-sectional units and a moderate length time

series is available.

The big picture idea that one needs to form groups of observations for use in

grouping-based inference schemes that result in dependence between observations that

belong to different groups being small relative to the total sampling variation of the

estimator of interest is true in general. Inference will not be approximately valid if
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this condition is violated. Just like discussion of identifying assumptions and model

specification, discussion of why this condition on dependence is plausible for a grouping

scheme used in practice in any given empirical setting should be provided.

We wish to conclude by noting that we think the advice given above is sensible and

will produce reliable inference across many settings. Of course, there remains substan-

tial work to be done. Choosing an appropriate grouping strategy is still largely an

ad hoc and intuitive exercise. Providing implementable, adaptive procedures to group

selection is an important topic for further research. Grouping strategies are simple and

often one has some intuition about sensible strategies. However, they are crude ways to

approximate covariance structures as they allow quite general forms of correlation be-

tween observations that share groups but impose, in estimation, no correlation between

observations across groups. Smoother approximations as provided by appropriate gen-

eralizations of traditional HAC estimators as in Driscoll and Kraay (1998), Vogelsang

(2012), and Bester et al. (2016) may offer gains in finite samples, though other issues

arise in the application of these methods that could use further exploration. Finally,

inference that is robust to very general forms of cross-sectional/spatial and tempo-

ral dependence may be very imprecise. There may be substantial gains available from

modeling covariance structures among observations and exploiting these models to gain

efficiency. Thinking about the trade-offs between robustness and efficiency and pro-

viding tractable flexible models for the types of rich dependence structures that seem

likely in observational accounting and finance data may be a useful avenue for further

research.
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Clusters G-1 Fixed Effects
FRQ x 

RE_VALUE STATE_INDEX FRQ RE_VALUE CASH FLOW Q LN_MVE LEVERAGE LN_AGE

firm 2158 firm, year 0.12 0.30 0.41 0.22 0.09 0.17 0.27 0.06 0.35
state 48 firm, year 0.13 0.30 0.42 0.25 0.13 0.20 0.28 0.08 0.39
one-digit SIC 8 firm, year 0.14 0.27 0.37 0.21 0.15 0.18 0.26 0.09 0.32
two-digit SIC 53 firm, year 0.15 0.29 0.38 0.21 0.14 0.20 0.27 0.08 0.34
size category 4 firm, year 0.10 0.19 0.27 0.14 0.11 0.13 0.10 0.06 0.17
8 year time block 1 firm, year 0.08 0.06 0.04 0.06 0.06 0.08 0.08 0.05 0.11
6 year time block 2 firm, year 0.09 0.09 0.05 0.09 0.06 0.10 0.10 0.07 0.21
4 year time block 3 firm, year 0.11 0.10 0.07 0.07 0.06 0.12 0.10 0.09 0.24
2 year time block 7 firm, year 0.15 0.20 0.07 0.10 0.07 0.14 0.19 0.10 0.29
state 48 firm, state x year 0.10 0.10 0.41 0.22 0.12 0.18 0.27 0.07 0.34
one-digit SIC 8 firm, one-digit SIC x year 0.14 0.24 0.38 0.20 0.13 0.18 0.25 0.08 0.32
two-digit SIC 53 firm, one-digit SIC x year 0.14 0.14 0.36 0.18 0.13 0.17 0.24 0.07 0.31
two-digit SIC 53 firm, two-digit SIC x year 0.13 0.13 0.37 0.17 0.13 0.17 0.25 0.07 0.29
size category 4 firm, size category x year 0.07 0.20 0.29 0.13 0.11 0.11 0.07 0.06 0.14
8 year time block 1 firm x 8 year time block, year 0.04 0.05 0.02 0.04 0.04 0.04 0.03 0.05 0.10
6 year time block 2 firm x 6 year time block, year 0.05 0.06 0.05 0.05 0.03 0.09 0.03 0.06 0.22
4 year time block 3 firm x 4 year time block, year 0.02 0.04 0.02 0.03 0.02 0.05 0.02 0.03 0.13
2 year time block 7 firm x 2 year time block, year 0.01 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.04

firm, year 16 firm, year 0.08 0.17 0.07 0.09 0.05 0.11 0.18 0.05 0.18
state, year 16 firm, year 0.10 0.21 0.08 0.11 0.06 0.11 0.21 0.07 0.22
one-digit SIC, year 8 firm, year 0.11 0.19 0.08 0.10 0.05 0.09 0.16 0.09 0.20
two-digit SIC, year 16 firm, year 0.11 0.18 0.07 0.10 0.08 0.11 0.19 0.08 0.20
firm, year 16 firm, state x year 0.07 0.04 0.07 0.09 0.05 0.09 0.18 0.05 0.18
state, year 16 firm, state x year 0.08 0.11 0.08 0.09 0.06 0.10 0.20 0.07 0.21
firm, year 16 firm, one-digit SIC x year 0.08 0.15 0.06 0.08 0.05 0.10 0.18 0.05 0.18
one-digit SIC, year 8 firm, one-digit SIC x year 0.11 0.16 0.07 0.10 0.05 0.08 0.16 0.10 0.21
two-digit SIC, year 16 firm, one-digit SIC x year 0.11 0.11 0.05 0.09 0.04 0.07 0.15 0.09 0.20
firm, year 16 firm, two-digit SIC x year 0.07 0.07 0.04 0.07 0.05 0.09 0.16 0.04 0.17
two-digit SIC, year 16 firm, two-digit SIC x year 0.09 0.10 0.05 0.09 0.06 0.10 0.17 0.06 0.18

A. One-Way Clustering

B.  Two-Way Clustering

Note:  Size of 5% level tests obtained from simulation study.  1000 simulation replications were performed.  The simulation standard error for a 5% level test is 0.0069.  Panel A shows results based on one-
way clustering, and Panel B shows results based on two-way clustering.  The column "Clusters" gives the level at which clustering occurs, and the column "Fixed Effects" gives the levels of fixed effects that 
are included in the estimated model.  The remaining columns give the names of the firm and time varying variables in the data whose effects we may be interested in inferring.  Critical values are obtained 
from a t-distribution with G-1 degrees of freedom where G is the number of clusters used in forming one-way clustered standard errors or the smaller of the number of clusters along each dimension for 
two-way clustering.  G-1 is provided in the column "G-1" for reference.  Bold rows indicate that the largest size distortion in that row is .05 or less.  Further details are provided in the main text, and details 
about the simulation design are given in a supplementary appendix.

Table 1.  Size of 5% Level Tests Based on Clustered Standard Errors from Simulation Experiment
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Clusters Fixed Effects RE_VALUE STATE_INDEX FRQ
FRQ x 

RE_VALUE CASH FLOW Q LN_MVE LEVERAGE LN_AGE
firm firm, year 0.14 0.32 0.44 0.25 0.11 0.20 0.29 0.08 0.38
state firm, year 0.14 0.31 0.44 0.26 0.15 0.23 0.29 0.09 0.40
one‐digit SIC firm, year 0.21 0.32 0.41 0.28 0.18 0.24 0.31 0.14 0.34
two‐digit SIC firm, year 0.16 0.31 0.40 0.23 0.15 0.20 0.29 0.09 0.35
size category firm, year 0.18 0.29 0.37 0.23 0.18 0.19 0.16 0.12 0.23
8 year time block firm, year  0.20 0.15 0.10 0.17 0.15 0.24 0.27 0.18 0.24
6 year time block firm, year 0.20 0.18 0.11 0.20 0.12 0.21 0.23 0.20 0.31
4 year time block firm, year 0.18 0.18 0.11 0.14 0.13 0.20 0.20 0.17 0.29
2 year time block firm, year 0.18 0.23 0.08 0.13 0.09 0.17 0.24 0.15 0.27
state firm, state x year 0.13 0.16 0.43 0.27 0.14 0.21 0.29 0.10 0.37
one‐digit SIC firm, one‐digit SIC x year  0.21 0.28 0.42 0.25 0.18 0.23 0.31 0.13 0.35
two‐digit SIC firm, one‐digit SIC x year 0.21 0.19 0.39 0.25 0.18 0.23 0.29 0.13 0.35
two‐digit SIC firm, two‐digit SIC x year 0.15 0.17 0.39 0.20 0.15 0.18 0.28 0.08 0.32
size category firm, size category x year 0.14 0.30 0.39 0.22 0.19 0.19 0.13 0.12 0.22
8 year time block firm x 8 year time block, year 0.10 0.10 0.06 0.09 0.06 0.09 0.06 0.08 0.20
6 year time block firm x 6 year time block, year 0.13 0.15 0.12 0.13 0.10 0.19 0.11 0.15 0.24
4 year time block firm x 4 year time block, year 0.09 0.13 0.09 0.09 0.09 0.13 0.07 0.11 0.17
2 year time block firm x 2 year time block, year 0.07 0.17 0.08 0.08 0.08 0.10 0.07 0.10 0.09

Table 2.  Size of 5% Level Tests Based on Clustered Standard Errors with Wild Bootstrap Critical Values from Simulation Experiment

Note:  Size of 5% level tests obtained from simulation study.  1000 simulation replications were performed.  The simulation standard error for a 5% level test is 0.0069.  The column "Clusters" gives 
the level at which clustering occurs, and the column "Fixed Effects" gives the levels of fixed effects that are included in the estimated model.  The remaining columns give the names of the firm and 
time varying variables in the data whose effects we may be interested in inferring.  Critical values are obtained by applying the cluster wild bootstrap of Cameron et al. (2008) using the clusters 
defined in the column "Clusters."  Note that in no row are size distortions uniformly .05 or smaller.   Further details are provided in the main text, and details about the simulation design are given in
a supplementary appendix.
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Clusters Fixed Effects RE_VALUE STATE_INDEX FRQ
FRQ x 

RE_VALUE CASH FLOW Q LN_MVE LEVERAGE LN_AGE
firm  firm, year 0.25 0.29 0.21 0.21 0.23 0.26 0.26 0.23 0.26
state  firm, year 0.24 0.27 0.20 0.20 0.22 0.24 0.25 0.22 0.24
one‐digit SIC  firm, year 0.21 0.24 0.15 0.16 0.16 0.19 0.21 0.19 0.21
two‐digit SIC  firm, year 0.24 0.28 0.19 0.20 0.19 0.24 0.25 0.22 0.24
size category  firm, year 0.20 0.22 0.17 0.18 0.17 0.19 0.19 0.19 0.19
8 year time block  firm, year 0.07 0.08 0.05 0.05 0.07 0.06 0.06 0.05 0.08
6 year time block  firm, year 0.06 0.07 0.06 0.06 0.06 0.05 0.06 0.06 0.11
4 year time block  firm, year 0.08 0.07 0.06 0.05 0.07 0.05 0.07 0.06 0.15
2 year time block  firm, year 0.09 0.09 0.05 0.05 0.09 0.07 0.08 0.07 0.14
state  firm, state x year 0.22 0.20 0.20 0.21 0.20 0.21 0.24 0.20 0.24
one‐digit SIC  firm, one‐digit SIC x year 0.21 0.24 0.15 0.17 0.15 0.18 0.22 0.19 0.19
two‐digit SIC  firm, two‐digit SIC x year 0.23 0.24 0.18 0.18 0.17 0.23 0.25 0.22 0.22
size category  firm, size category x year 0.19 0.23 0.18 0.18 0.17 0.21 0.17 0.17 0.16
8 year time block  firm x 8 year time block, year 0.04 0.04 0.04 0.04 0.05 0.04 0.03 0.04 0.05
6 year time block  firm x 6 year time block, year 0.02 0.02 0.05 0.03 0.04 0.04 0.03 0.03 0.07
4 year time block  firm x 4 year time block, year 0.01 0.02 0.04 0.03 0.03 0.03 0.02 0.02 0.01
2 year time block  firm x 2 year time block, year 0.00 0.00 0.02 0.02 0.02 0.02 0.00 0.01 0.00

Table 3.  Size of 5% Level Tests Based on Clustered Standard Errors with Moving Block Bootstrap Critical Values from Simulation Experiment

Note:  Size of 5% level tests obtained from simulation study.  1000 simulation replications were performed.  The simulation standard error for a 5% level test is 0.0069.  The column "Clusters" gives 
the level at which clustering occurs for computing standard errors, and the column "Fixed Effects" gives the levels of fixed effects that are included in the estimated model.  The remaining columns 
give the names of the firm and time varying variables in the data whose effects we may be interested in inferring.  Critical values are obtained by applying the time series moving block bootstrap 
with a block size of three to simulate standard errors for t‐statistics formed from models with fixed effects as in column "Fixed Effects" and standard errors clustered according to column "Clusters." 
Bold rows indicate that the largest size distortion in that row is .05 or less.   Further details are provided in the main text, and details about the simulation design are given in a supplementary 
appendix.
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Groups G‐1 Effective Fixed Effects RE_VALUE STATE_INDEX FRQ
FRQ x 

RE_VALUE CASH FLOW Q LN_MVE LEVERAGE LN_AGE

state 48 firm, state x year 0.04 0.05 0.08 0.02 0.02 0.03 0.06 0.05 0.07
one‐digit SIC 8 firm, one‐digit SIC x year  0.02 0.03 0.07 0.03 0.01 0.02 0.02 0.02 0.03
size category 4 firm, size category x year 0.06 0.19 0.29 0.15 0.06 0.12 0.07 0.06 0.14
8 year time block 1 firm x 8 year time block, year 0.05 0.01 0.03 0.04 0.04 0.04 0.04 0.05 0.02
6 year time block 2 firm x 6 year time block, year 0.05 0.02 0.04 0.05 0.05 0.06 0.03 0.06 0.02
4 year time block 3 firm x 4 year time block, year 0.04 0.01 0.03 0.04 0.03 0.06 0.03 0.05 0.02
2 year time block 7 firm x 2 year time block, year 0.04 0.02 0.04 0.05 0.05 0.05 0.03 0.06 0.03

state ‐ firm, state x year 0.07 0.06 0.11 0.04 0.06 0.06 0.06 0.06 0.10
one‐digit SIC ‐ firm, one‐digit SIC x year  0.08 0.07 0.11 0.09 0.06 0.06 0.07 0.05 0.08
2 year time block ‐ firm x 2 year time block, year 0.04 0.05 0.04 0.05 0.06 0.05 0.05 0.06 0.03

Table 4.  Size of 5% Level Tests Based on Sample‐Splitting from Simulation Experiment

A. Fama‐MacBeth

B.  Canay, Romano, Shaikh

Note:  Size of 5% level tests obtained from simulation study.  1000 simulation replications were performed.  The simulation standard error for a 5% level test is 0.0069.  Panel A shows results based on FM 
using critical values from a t‐distribution with G‐1 degrees of freedom where G is the number of groups.  G‐1 is provided in the column "G‐1" for reference.  Panel B shows results based on the 
randomization inference procedure of Canay, Romano, and Shaikh (2014).  The column "Groups" gives the level at which sample splitting occurs, and the column "Effective Fixed Effects" gives the levels of 
fixed effects that are included in the estimated model.  The remaining columns give the names of the firm and time varying variables in the data whose effects we may be interested in inferring.  Bold 
rows indicate that the largest size distortion in that row is .05 or less.  Further details are provided in the main text, and details about the simulation design are given in a supplementary appendix.
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Procedure RE_VALUE STATE_INDEX FRQ
FRQ x 

RE_VALUE CASH FLOW Q LN_MVE LEVERAGE LN_AGE
Sensitivity Analysis 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.02
ad hoc  Group Selection 0.04 0.02 0.05 0.04 0.05 0.06 0.03 0.06 0.02

Table 5.  Size of 5% Level Tests Based Sensitivity Analysis and ad hoc Group Selection

Note:  Size of 5% level tests obtained from simulation study.  1000 simulation replications were performed.  The simulation standard error for a 5% level test is 0.0069.  
"Sensitivity Analysis" gives size of tests based on estimating clustered standard errors under several different clustering structures and rejecting only if the hypothesis is 
rejected across all structures.  "ad hoc  Group Selection" gives size of tests based on an ad hoc  data‐dependent group selection procedure outlined in the main text.  
The remaining columns give the names of the firm and time varying variables in the data whose effects we may be interested in inferring.  Bold rows indicate that the 
largest size distortion in that row is .05 or less.  Further details are provided in the main text, and details about the simulation design are given in a supplementary 
appendix.
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RE_VALUE STATE_INDEX FRQ
FRQ x

RE_VALUE CASH FLOW Q LN_MVE LEVERAGE LN_AGE

Fixed Effects Structure
firm, year 0.351 0.348 0.135 0.158 0.046 0.072 0.098 0.320 0.437
firm, state x year 0.338 0.870 0.134 0.158 0.046 0.070 0.099 0.327 0.433
firm, one‐digit SIC x year 0.346 0.317 0.134 0.153 0.045 0.071 0.096 0.318 0.422
firm, two‐digit SIC x year 0.328 0.249 0.129 0.148 0.045 0.068 0.097 0.320 0.405
firm, size category x year 0.322 0.341 0.146 0.157 0.045 0.067 0.069 0.313 0.318
firm x 8 year time block, year 0.383 0.272 0.155 0.158 0.048 0.063 0.085 0.343 0.558
firm x 6 year time block, year 0.483 0.397 0.161 0.167 0.048 0.071 0.088 0.381 0.668
firm x 4 year time block, year 0.439 0.347 0.149 0.148 0.051 0.069 0.089 0.386 0.761
firm x 2 year time block, year 0.607 0.453 0.133 0.171 0.055 0.084 0.100 0.517 1.308
Fixed Effects Structure
firm, year 0.571 0.425 0.180 0.217 0.129 0.125 0.180 0.734 0.734
firm, state x year  0.591 2.126 0.181 0.232 0.134 0.127 0.186 0.778 0.812
firm, one‐digit SIC x year  0.575 0.418 0.180 0.217 0.126 0.124 0.180 0.730 0.747
firm, two‐digit SIC x year  0.605 0.413 0.180 0.227 0.124 0.124 0.188 0.741 0.773
firm, size category x year  0.558 0.424 0.185 0.216 0.127 0.125 0.152 0.703 0.620
firm x 8 year time block, year  0.715 0.471 0.190 0.237 0.127 0.129 0.175 0.778 0.974
firm x 6 year time block, year  0.816 0.556 0.200 0.249 0.126 0.135 0.195 0.851 1.206
firm x 4 year time block, year  0.838 0.557 0.185 0.252 0.130 0.135 0.193 0.893 1.561
firm x 2 year time block, year  1.065 0.762 0.206 0.311 0.155 0.164 0.215 1.159 2.789

Groups
state 1.493 5.996 0.268 1.355 0.285 0.327 0.226 0.808 1.099
one‐digit SIC 2.198 0.986 0.250 0.735 0.309 0.236 0.318 1.783 1.246
size category 0.326 0.334 0.144 0.167 0.057 0.067 0.070 0.313 0.317
8 year time block 0.419 0.912 0.130 0.161 0.049 0.061 0.083 0.335 0.639
6 year time block 0.464 0.781 0.110 0.146 0.047 0.064 0.084 0.370 0.822
4 year time block 0.513 1.084 0.114 0.151 0.054 0.066 0.101 0.411 0.808
2 year time block 0.749 1.734 0.118 0.176 0.065 0.078 0.119 0.570 1.256
ad hoc  Group Selection 0.568 1.159 0.114 0.159 0.054 0.069 0.097 0.437 0.932

Table 6.  Simulation Root‐Mean‐Squared‐Error

A. OLS on Full Sample

C.  Sample Splitting on Full Sample

Note:  Root‐mean‐squared‐error obtained from simulation study.  1000 simulation replications were performed.  Panel A shows results based on the standard OLS 
regression of the linear fixed effects model using the fixed effects structure specified in the first column of the table.  Panel B shows results based on the standard OLS 
regression of the linear fixed effects model using the fixed effects structure specified in the first column of the table using only the data from the largest balanced subset of 
the panel.  The results in Panel B are for the point estimator corresponding to the moving block bootstrap which uses this subsample.  Panel C shows results based on FM 
with splits specified in the first column of the table.  The row labeled "ad hoc  Group Selection" in Panel C is based on the adaptive procedure outlined in Section 3.3 of the 
text.  The remaining columns give the names of the firm and time varying variables in the data whose effects we may be interested in inferring.  Further details are provided 
in the main text, and details about the simulation design are given in a supplementary appendix.

B. OLS on Balanced Subsample
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Clusters G‐1 Fixed Effects ‐4 ‐3 ‐2 ‐1 0 1 2 3 4

8 year time block 1 firm x 8 year time block, year 0.26 0.18 0.12 0.07 0.04 0.07 0.13 0.20 0.26
2 year time block 7 firm x 2 year time block, year 0.68 0.43 0.18 0.04 0.02 0.06 0.18 0.45 0.68

8 year time block ‐  firm, year 0.20 0.15 0.10 0.06 0.05 0.07 0.10 0.15 0.21
8 year time block ‐  firm x 8 year time block, year 0.14 0.10 0.07 0.04 0.04 0.05 0.07 0.11 0.13
6 year time block ‐  firm x 6 year time block, year 0.24 0.14 0.08 0.04 0.03 0.06 0.10 0.17 0.26
4 year time block ‐  firm x 4 year time block, year 0.34 0.22 0.13 0.05 0.03 0.05 0.14 0.23 0.34
2 year time block ‐  firm x 2 year time block, year 0.27 0.16 0.07 0.03 0.02 0.04 0.09 0.18 0.30

state 48 firm, state x year 0.08 0.06 0.03 0.02 0.02 0.03 0.04 0.06 0.09
one‐digit SIC 8 firm, one‐digit SIC x year  0.27 0.19 0.10 0.04 0.03 0.05 0.11 0.19 0.28
8 year time block 1 firm x 8 year time block, year 0.26 0.19 0.13 0.07 0.04 0.08 0.14 0.20 0.26
6 year time block 2 firm x 6 year time block, year 0.63 0.44 0.25 0.10 0.05 0.12 0.27 0.46 0.65
4 year time block 3 firm x 4 year time block, year 0.77 0.56 0.31 0.11 0.04 0.11 0.34 0.58 0.80
2 year time block 7 firm x 2 year time block, year 0.85 0.65 0.36 0.13 0.04 0.12 0.37 0.67 0.86

2 year time block ‐ firm x 2 year time block, year 0.83 0.63 0.35 0.13 0.05 0.13 0.38 0.65 0.85

Sensitivity Analysis ‐ ‐ 0.73 0.47 0.19 0.03 0.00 0.04 0.22 0.48 0.74
ad hoc  Group Selection ‐ ‐ 0.70 0.50 0.28 0.09 0.04 0.12 0.30 0.52 0.71

Table 7.  Power for Coefficient on FRQ x RE_VALUE from Simulation

A. Clustered Standard Errors with t‐Critical Value

B.  Moving Blocks Boostrap

Note:  Power of 5% level tests obtained from simulation study.  Power is against the alternative that the parameter value is equal to β0,FRQ x RE_VALUE + ksFRQ x RE_VALUE where k is given in the column labels, 
β0,FRQ x RE_VALUE denotes the true parameter value, and sFRQ x RE_VALUE is the standard error of the OLS estimator of β0,FRQ x RE_VALUE from a model using only firm and time fixed effects obtained from the 
simulation.  1000 simulation replications were performed.  Panel A shows results based on one‐way clustering with critical values from a t‐distribution with G‐1 degrees of freedom where G is the number 
of clusters used in forming the one‐way clustered standard errors.  Panel B shows results based on using critical values from the moving blocks bootstrap.  Panel C presents results based on FM with 
critical values from a t‐distribution with G‐1 degrees of freedom where G is the number of groups.  The G‐1 used to obtain critical values for clustering or FM is provided in the column "G‐1" for reference.  
Panel D shows results based on the randomization inference procedure of Canay, Romano, and Shaikh (2014).  Panel E presents results from the sensitivity analysis procedure and the ad hoc  procedure  
for selecting groups.  The column "Clusters" gives the level at which clustering or sample‐splitting occurs, and the column "Fixed Effects" gives the levels of fixed effects that are included in the estimated 
model.  Further details are provided in the main text, and details about the simulation design are given in a supplementary appendix.

k

C.  Sample Splitting

D.  Canay, Romano, and Shaikh

E.  Sensitivity Analysis and ad hoc Group Selection
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(a) (b) (c) (d)

Figure 2. Power of 5% level tests based on simulation data. The y-axis gives

the rejection frequency of 5% level tests of the null hypothesis that the population

parameter is equal to βj,0 + ksj where k is the value on the x-axis, βj,0 is the true

coefficient on variable j, and sj is the standard deviation across simulation repli-

cations of the OLS estimator of the coefficient on variable j from model (14) using

only firm and year fixed effects. The procedures considered are (a) ad hoc Group

Selection, (b) standard errors clustered by 2 year time block with firm by 2 year time

block and year fixed effects, (c) Canay-Romano-Shaikh by 2 year time block, and (d)

sensitivity analysis. Further details are provided in the main text, and details about

the simulation design are given in a supplementary appendix.
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