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Abstract

Andreou et al.| (2019) have proposed a test for common factors based on canonical correlations
between factors estimated separately from each group. We propose a simple bootstrap test that
avoids the need to estimate the bias and variance of the canonical correlations explicitly and provide
high-level conditions for its validity. We verify these conditions for a wild bootstrap scheme similar
to the one proposed in |Gongalves and Perron| (2014)). Simulation experiments show that this
bootstrap approach leads to null rejection rates closer to the nominal level in all of our designs

compared to the asymptotic framework.

1 Introduction

Factor models have been extensively used in the past decades to reduce dimensions of large data
sets. They are now widely used in forecasting, as controls in regressions, and as a tool to model
cross-sectional dependence.

Andreou et al. (2019) have proposed a test of whether two groups of data contain common factors.
The test consists in estimating a set of factors for each subgroup using principal components and
testing whether some canonical correlations between these two groups of estimated factors are 1 as
they would be if there are factors common to both groups of data. Inference in this situation is

complicated by the need to account for the preliminary estimation of the factors. The asymptotic
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theory in |Andreou et al.| (2019)) is highly nonstandard with non-standard rates of convergence and the
presence of an asymptotic bias. Under restrictive assumptions, they propose an estimator for this bias
and construct a feasible statistic. However, their simulation results suggest that, even under these
restrictive assumptions, their statistic can exhibit level distortions.

This approach was applied in |Andreou et al. (2022) to sets of returns on individual stocks and on
portfolios. In principle, these two sets of returns should share a common set of factors that represent
the stochastic discount factor. The authors find a set of 3 common factors that price both individual
stocks and sorted portfolios. They also find that 10 principal components from the large number of
factors proposed in the literature to price stocks (the factor zoo) are needed to span the space of these
three common factors.

This paper proposes the bootstrap as an alternative inference method. Our main contribution is to
propose a simple bootstrap test that avoids the need to estimate the bias and variance of the canonical
correlations explicitly. We show its validity under a set of high-level conditions that allow for weak
dependence on the data generating process. The specific bootstrap scheme that is used depends on
the assumptions a researcher is willing to make about this dependence.

For example, if a researcher is willing to assume that the idiosyncratic terms do not exhibit cross-
sectional or serial correlation, we show that a wild bootstrap is valid in this context. This is analogous
to the results in Gongalves and Perron| (2014) who showed the validity of a wild bootstrap in the context
of factor-augmented regression models. If the presence of cross-sectional dependence is important, a
researcher could instead use the cross-sectional dependent bootstrap of (Goncalves and Perron| (2020).
If serial correlation in the idiosyncratic errors is relevant, Koh| (2022)) proposed an autoregressive sieve
bootstrap for factor models. Finally, we also discuss an extension of this method that allows for
cross-sectional and serial dependence in the idiosyncratic errors.

The bootstrap has recently been applied in /Andreou et al.| (2024)) to test for the number of common
factors. Contrary to our framework which follows Andreou et al. (2019), one set of the factors is
assumed to be observed, implying that their bootstrap method is different from ours.

The remainder of the paper is organized as follows. Section 2 describes the model and the testing
problem in Andreou et al.| (2019). Section 3 introduces a general bootstrap scheme in this context
and provides a set of high level conditions under which the bootstrap test is asymptotically valid
under the null hypothesis. We also provide a set of sufficient conditions that ensure the bootstrap
test is consistent under the alternative hypothesis. Section 4 verifies these conditions for the wild
bootstrap method of |Gongalves and Perron| (2014)) under a set of assumptions similar to those in
Andreou et al.| (2019)). Section 5 provides simulation results and Section 6 concludes. We provide
three appendices. Appendix A contains a set of assumptions under which we derive the limiting
distribution of the original test statistic as well as auxiliary lemmas used to derive this asymptotic
distribution. Appendix B contains a set of bootstrap high level conditions that mirror the primitive

assumptions in Appendix A. It also provides the bootstrap analog of the auxiliary lemmas introduced



in Appendix A, which are used to prove the bootstrap results in Section 3. Finally, Appendix C
contains the proofs of the bootstrap results for the wild bootstrap method proposed in Section 4.

A final word on notation. For a bootstrap sequence, say X R’,T’ we use X}(,,T p—*>p 0, or, equivalently,
or Xy r LN 0, as N,T — oo, in probability, to mean that, for any € > 0, P*(]X}'{,ﬂ > €) = 0,
where P* denotes the probability measure conditionally on the original data. An equivalent notation
is X3 7 = 0p=(1) (where we omit the qualification “in probability” for brevity). We also write X3, » =
Op+ (1) to mean that P*(| X3 7| > M) —, 0 for some large enough M. Finally, we write X3 d—*>p X
or, equivalently, X?{LT % x , in probability, to mean that, for all continuity points z € R of the cdf of
X, say F(z) = P(X < ), we have that P*(X} r <z) — F(z) — 0.

2 Framework

2.1 The group panel factor model

Following |Andreou et al| (2019)) (henceforth AGGR(2019)), we consider a group factor panel model

with two groups, both driven by a set of common factors and a set of specific factors:
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Here, y1; and yo; are N1 X 1 and N3 x 1 vectors, respectively. In particular, y;; = [ijt, .. ,yijjt]’

collects the IV; observations in group j at time . We use a similar notation to denote €;;. The k¢ x 1
vector fi denotes the common factors whereas f7, is a kj x 1 vector which contains the factors specific
to group j. The matrices A7 and Aj contain the factor loadings associated with the common factors
and the group specific factors for group j, respectively. Thus, Aj is N; x k¢ and Aj is N; x k‘j We let

kj = k°+ ki denote the total number of factors in each sub-panel and define k= min (k1, k2). Finally,
/

/
we let fj; = (( e, ( jst) > define the k; x 1 vector that collects all factors in each group. Their
variance-covariance matrices are Vj; = E (fjif},), j.l = 1,2. As in AGGR(2019), we assume that the
common and group-specific factors have mean zero, variance-covariance matrix equal to the identity

matrix, and that they are orthogonal within each group:

¢ Iic O
E(fjt) =0and Vj; = Var (fjr) = Var Ji = k = I;.
T 0 Iy

However, we allow for the possibility that f}, and f5, are correlated with covariance matrix ®.

2.2 The testing problem

AGGR/(2019) propose an inference procedure for determining the number of common factors k. Their

procedure is based on the fact that the canonical correlations between the two sets of factors fi; and



far identify the common factor space. Specifically, let p1 > pa > ... > p, denote the ordered canonical
correlations between f1; and fo:. The squared canonical correlations pl2 for I =1,....k are defined as
the k largest eigenvalues of the matrix R = VﬁleVﬁlVgl (or equivalently of R= V2§1V21 Vﬁlvlg).
Proposition 1 of AGGR(2019) shows that if k¢ > 0, the largest k¢ canonical correlations are equal to
1 and the remaining k—k¢ are strictly less than 1. This corresponds to the null hypothesis that there

are k¢ common factors, i.e.,
Ho:p1=...=pge = 1> pey1 > ... > pg.

To test Hy, AGGR(2019) propose a test statistic based on
kC

k) =D hi,
=1

where p; is the sample analogue of p; (we define these estimators below). Under the null, é (k¢) should
be close to k¢, whereas it should be less than k¢ under the alternative hypothesis H;. Here, H; is
defined as

Hi:30<r<kst.pi=...=p,=1>prp1 > ... 2 pg,

with the understanding that if r = 0, p; < 1 for all [ = 1,... k, corresponding to the absence of
common factors. Thus, we reject the null when é (k¢) — k¢ is negative and large.

The critical value used in AGGR(2019) is obtained from the asymptotic distribution of the test
statistic when Ni, Nog and T' — oo. Our goal in this paper is to propose an alternative method of

inference based on the bootstrap.

2.3 Canonical correlations, common and group-specific factors and their loadings

Here, we define the estimators p;, [ = 1,... k. In the process of doing so, we also define the estimators
of the common and group-specific factors and factor loadings. These will be used to form our bootstrap
data generating process.

We start by extracting the first k; principal components for each group j, with j = 1,2. In
particular, let Y; denote the observed data matrix of size 7' x N; for group j. The factor model for

this group can be written as
Yj = FjA) +¢j, (1)

where €j is T % Nj, Fj = (fjl, .. .,ij)/ is T % ]{Zj, and Aj is Nj X kj.
Given Y}, we estimate F; and A; with the standard method of principal components. In particular,
~ N N /
F} is estimated with the 1" x k; matrix F; = ( fits - LT ) composed of v/T times the eigenvec-

tors corresponding to the k; largest eigenvalues of of YJYJ’ /T N; (arranged in decreasing order), where

FIF; N .
the normalization == = I} is used. The factor loading matrix is A; = Y/ F;/T.
J J

The estimators p;, I = 1,...,k are obtained from the eigenvalues of the sample analogue of R.




Specifically, letting
T
Vir = FF = ijtf{t, il=12,
we can defind!]
R=Vi'ViaViy ' Var.
The k¢ largest eigenvalues of R are denoted by ﬁlz, I =1,...,k° They correspond to the largest k¢
sample squared canonical correlations between fu and fgt.

For our bootstrap data generating process (to be defined in the next section), we also need estimates
of the common and group-specific factors and loadings. These estimates are also used to obtain the
test statistic proposed by AGGR(2019). Hence, we describe them next.

First, using Definition 1 of AGGR(2019), we can estimate the common factors as follows. Let
the k¢ associated eigenvectors of R (the canonical directions) be collected in the k; x k¢ matrix W,
normalized to have length one, e.g. WVaW = WW = I, since Vi = Iy, . Given W, an estimator
of the common factors f¢ is f¢ = W' fi;.

The group- specnﬁc factors f7, (j = 1,2) can then be estimated using Definition 2 of AGGR(2019).

In particular, are obtained by applying the method of principal components to the 7" x IN; matrix of

]t
residuals Z; obtained from regressing y;; on the estimated common components ft . More specifically,
given model , we can further decompose F; and A; in terms of common and group-specific factors

and factor loadings to write

Yy = FAY + FPAS +¢5.

cey

Let [ = ( e,

The regression of Y; on Fe yields the common factor loadings

N !/
% ) denote the T x k¢ matrix of the k¢ largest estimated common factors.

. -1 1.
! / !
A= vjpe (FFe) = Zv/Fe.

The matrix Z; is defined as Z; = Y — 3 CA;’ . Given E;, we can now apply the method of principal

~ ~ /
components to obtain F § = ( R f]‘?T ) , composed of v/T times the eigenvectors corresponding

to the k7 largest eigenvalues of of Z;E / T'N; (arranged in decreasing order), where the normalization
FS‘/FS‘

= Iks is used.

2.4 The test statistic and its asymptotic distribution

To test Hp, we rely on the statistic
kC
Y
=1

IFor simplicity, we focus on R here. Our results also apply to a test statistic based on the alternative estimator R*
defined in AGGR(2019) (this is the sample analogue of R in our notation).




Our goal is to propose a bootstrap test based on the bootstrap analogue of £ (k©) — k¢, say £ (k°) — k°.
In particular, we focus on obtaining a valid bootstrap p-value p* = P* (é* (k¢) < ¢ (kc)>

To understand the properties that a bootstrap test should have in order to be asymptotically valid,
we first review the large sample properties of this test statistic, as studied by AGGR(2019). In the
following, we let N = min (N7, Na) = Ny (without loss of generality) and define py = /Na/Ny. Since
N = Ny < Ny, uny < 1. We assume that uy — p € [0,1]. When Ny = No =N, uy = p = 1.

Appendix A contains a set of assumptions under which we derive the asymptotic distribution of
£ (k°). Compared to AGGR(2019), we impose a stricter rate condition on N relatively to 7. In
particular, while our Assumption 1 maintains AGGR(2019)’s assumption that v/T'/N — 0, we require
that N/ T3/2 =5 0 as opposed to N / T5/2 — 0. The main reason why we adopt a stricter rate condition
is that it greatly simplifies both the asymptotic and the bootstrap theory. E| In addition, we generalize
standard assumptions in the literature on factor models (see e.g., Bai (2003), Bai and Ng (2006) and
Gongalves and Perron (2014), henceforth GP(2014)) to the group factor context of interest here. Our
assumptions suggest natural bootstrap high level conditions (which we provide in Appendix B) under
which the bootstrap asymptotic distribution can be derived. Since some of these bootstrap conditions
have already been verified in the previous literature, we can rely on existing results for proving our
bootstrap theory. Instead, AGGR(2019)’s assumptions are not easily adapted to proving our bootstrap
theory.

Next, we characterize the asymptotic distribution of é (k°) under Assumptions 1-6 in Appendix A.
We introduce the following notation. First, we let uj; = (A]/JV?J ) L\/%

factors estimation uncertainty for panel j. In particular, as is well known (cf. Bai (2003)), estimation

and note that wj; captures the

of fj: by principal components implies that each estimator fjt is consistent for H; f;;, a rotated version
. o _1 FJF; NjA; . . .
of f;t. The rotation matrix is defined as H; = V; L = ]JV]_J, where V; is a k; x k; diagonal matrix

containing the k; largest eigenvalues of YJYJ' /N;T on the main diagonal, in decreasing order. As shown

by Bai (2003), uj; is the leading term in the asymptotic expansion of /N; (fjt — ijjt). We let ug?
.. AN A\ Ne;j

denote the k°x 1 vector containing the first £° rows of uj; = ( ]]ij> Jfl\;j and define U; = ,uNug? —ué?.

Finally, we let Xy = T S.1 | EUd}) and . = TS E(fEfF).

/
Theorem 2.1 Suppose Assumptions 1-6 hold and the null hypothesis is true so that fj; = ( o ]3{)

2 Although we denote the bootstrap p-value by p*, we should note it is not random with respect to the bootstrap
measure P*. A similar notation is used below to denote the bootstrap bias B* and bootstrap variance ), of the
bootstrap test statistic é* (k¢). This choice of notation allows us to differentiate bootstrap population quantities from
other potential estimators that do not rely on the bootstrap.

3Under our Assumption 1, the asymptotic expansions of the test statistic (and of its bootstrap analogue) used to derive

the limiting distributions need to have remainders of order O, (5;,4T), with dy7 = min (\/N7 \/T) , whereas AGGR(2019)

need to obtain expansions up to order O, ((5;,6T).



for 3 =1,2. It follows that

T
. 1 - e 11
(k) =k + st (22 S ) = — —= > (Uith — B (Uith)) + Oy (037) (2)
2N ( e ) INVT VT = -
=B =2t
implying that
_ . 1
NVTQ;,M? <g (k%) — k° + 2NB> —4 N (0,1). (3)

Theorem corresponds to Theorem 1 in AGGR(2019) under our Assumptions 1-6. For complete-
ness, we provide a proof of this result in Appendix A. As in AGGR(2019), we obtain an asymptotic
expansion of R around R = V1_111712‘~/251‘~/21, where f/jk =71 Zthl fjtf,gt. We then use the fact that

c/ s/

under the null hypothesis, fj; and fi; share a set of common factors f{ (i.e. fj = ( i St

j =1,2), implying that the k¢ largest eigenvalues of R are all equal to 1. This explains why ¢ (k¢) is

for

centered around k¢ under the null. However, the asymptotic distribution of f (k¢) depends on the con-
tribution of the factors estimation uncertainty to ij =71 Zthl fjt f,;t, which involves products of fjt
and fkt. Using Bai (2003)’s identity for the factor estimation error fjt — Hj fjt, we rely on Lemma
in Appendix A (which gives an asymptotic expansion of 7! Zthl fjt — Hj fjt) ( fror — Hi fkt)/ up to
order O, ((5]:,4T)) to obtain the asymptotic distribution in Theorem

Under our assumptions, the leading term of the asymptotic expansion of é (k) — k¢ in is given
by ﬁl’)’, where B = tr (f};cl iu). Since B = Oy, (1) under our assumptions, ﬁ[)’ is of order O, (Nfl).
The asymptotic Gaussianity of the test statistic is driven by the first term on the right hand side of
, which we can rewrite as _#ﬁﬁ Z;‘FZI ZNt, where Zn, = UiU; — E (UU;). Under Assumption
6, Zn . satisfies a central limit theorem, i.e. we assum that ﬁ Zle Znt =% N (0,9). Hence,
NVTO;! (é(k‘c) — k¢ + Ftr (f];cliu» is asymptotically distributed as N (0,1), as stated in l)
Note that in deriving this result we have used the fact that vT /N — 0 and N/T3/2 — 0 to show that
the remainder is NvVTO, (0y7) = 0p (1).

Theorem illustrates two crucial features of the asymptotic properties of the test statistic é (k)
under the null. First, the test converges at a non-standard rate given by Nv/T. Second, the statistic
é (k¢) is not centered at k¢ even under the null. There is an asymptotic bias term of order O, (N *1)
given by B/2N. When multiplied by N+/T, this term is of order Op (\/T) Thus, the bias is diverging
but at a slower rate than the convergence rate N VT.

The distributional result is infeasible since we do not observe the asymptotic bias B nor the
asymptotic covariance matrix €. To obtain a feasible test statistic, we need consistent estimators of

B and . In particular, suppose that B and (), denote such estimators. Then, a feasible test statistic

“In contrast, AGGR(2019) rely on an asymptotic expansion up to order O, (5;,6T) because they require N/T5/2 -0
rather than N/T3/? — 0 (see their Proposition 3).

S AGGR(2019) provide conditions under which this high level condition holds. See in particular their Assumptions
A.5 and A.6, which are used to show that Zy: is a Near Epoch Dependent (NED) process. Since our contribution is
proving the bootstrap validity in this context, we do not provide these more primitive conditions. They are not required
to prove our bootstrap theory.
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Two crucial conditions for showing that & (k) —4 N (0,1) are (i) \/T(Z%— B) = 0, (1) and (ii)
Qu — Oy = 0p(1). Under these conditions, we can use a standard normal critical value to test Hg
against Hy. Since under Hy, f (k¢) — k€ is large and negative, the decision rule is to reject Hy whenever
3 (k) < zq, where z, is the a-quantile of a N (0,1) distribution. This is the approach followed by
AGGR(2019).

As it turns out, estimating B and ) is a difficult task when we allow for general time series and
cross-sectional dependence in the idiosyncratic errors £;;. In particular, we can show that B depends
on the cross-sectional dependence of £1; and e2; (but not on their serial dependence) whereas (Y
depends on both forms of dependence.

To see this, assume that k° =1 (and kj = 0 for j = 1,2), in which case B = 315y, Assume also
that N = Ny = Ny, which implies that uy = 1. When the idiosyncratic errors are independent across
the two groups, we can write

T T
Yyu=T""1 Z E (uy; — u2t)2 =7t Z[E (u%t) + F (u%t)]
t=1 t=1
For each group j, (ujzt) captures the factor estimation uncertainty in fjt and is given by E <u3t> =
(N_IA;AJ')_QFN, where T'j; = Var(N~Y2 N \jiej). Tt follows that

iz,{ = (NflA/lAl)iQFl + (NilAIQAQ)iZPQ,

where I'; = 7! Zthl I'j . This shows that B = >-!%y depends on T'; and Ty, the time averages
of the variances of the cross-sectional averages of \Aj;;e;;+ for j = 1,2. Hence, B depends on the
cross-sectional dependence of each group’s idiosyncratic errors, but it does not depend on their serial
dependence.

To see that (Y, depends on both serial and cross-sectional dependence in €;;, note that (0 =
Var (%T‘l/2 Zle ZN,t) is the long run variance of Zn+ = (u1r — th)z — FE (u1 — ugt)Q, whose form
depends on the potential serial dependence of €;;;. It also depends on the cross-sectional dependence
because Zy; is a (quadratic) function of u;;, which depends on the cross-sectional averages of ¢; .
Thus, we conclude that €, is a complicated function of the serial and cross-sectional dependence in
the idiosyncratic error terms.

For these reasons, in order to obtain a feasible test statistic, AGGR(2019) assume that each sub-
panel follows a strict factor model. Under this assumption (including the assumption of conditional
homoskedasticity in the idiosyncratic errors), the form of B and €, simplifies considerably. Their
Theorem 2 provides consistent estimators of these quantities, allowing for the construction of a feasible

test statistic. However, even under these restrictive assumptions, our simulations (to be discussed later)



show important level distortions.
This provides the main motivation for using the bootstrap as an alternative method of inference.
Our main goal is to propose a simple bootstrap test that avoids the need to estimate B and (Y

explicitly and outperforms the asymptotic theory-based test of AGGR(2019).

3 A general bootstrap scheme

3.1 The bootstrap data generating process and the bootstrap statistics

Let &* (k¢) denote the bootstrap analogue of ¢ (k¢). Our goal is to propose a bootstrap test that rejects
Ho whenever p* < «, where « is the significance level of the test and p* is the bootstrap p-value defined
as

Pt =P (Nﬁ (é* (k°) — k) < NVT (é (k°) — k)) .

The goal of this section is to propose asymptotically valid bootstrap methods. A crucial condition
for bootstrap validity is that the bootstrap p-value is asymptotically distributed as Ul y), a uniform
random variable on [0, 1], when Hg holds. Under Hj, the bootstrap p-value should converge to zero in
probability to ensure that the bootstrap test has power. We propose a general residual-based bootstrap
scheme that resamples the residuals from the two sub-panels in order to create the bootstrap data on
yi, and y5,. We highlight the crucial conditions that the resampled idiosyncratic errors €7, and &3,
need to verify in order to produce an asymptotically valid bootstrap test.

We adapt the general residual-based bootstrap method of GP(2014) to the group panel factor
model. Specifically, for j = 1, 2, let {e;t t=1,... 7Nj} denote a resampled version of {éjt = Yjt — Ajff — Aj Aft}.
The bootstrap data generating process (DGP) is

A ff
Y1t A7 A7 0 2 €l
[*]‘[AC o Ag ) [T e )
Yot 2 2 f28t 2t

or, equivalently, for j = 1,2, we let Y = ﬁ}[\; + €}, where F’j = [fjl,...,fj;p]’ is T' x k; and
Aj = (5\j71, e ,S\jJVj)’ is N; x k;. An important feature of is that it imposes the null hypothesis
of k° common factors between the two panels since the conditional mean of y7, relies on the restricted

~ ~ ~ /
estimated factors fj; = ( o j{) for each j = 1,2. This mimics the fact that y;; depends on

fit = ( - Jst’)/ under the null hypothesis. Similarly, €7, are a resampled version of the restricted
residuals €j;. Although other bootstrap schemes that do not impose the null hypothesis could be
consideredﬂ we focus on the null restricted bootstrap DGP in for two main reasons. First, the
fact that we impose the null hypothesis implies that the factors underlying the bootstrap DGP satisfy

the normalization conditions imposed on the group factor model (see Assumption 2(a)). In particular,

5For example, we could use the principal components estimators fjt and A]’ when generating y7;. To distinguish these
estimators from their restricted versions, we denote the latter by f;: and A;.



by construction ff is orthogonal in-sample to Aft for both 7 = 1,2 when we use Definition 2 of
AGGR(2019), and T~ 37 fe fe' = Iye and T~ 27 f3, 3 = Iy, for both j = 1,2. These properties
are crucial in showing the asymptotic Gaussianity of the bootstrap test statistic. Second, imposing the
null hypothesis in the bootstrap DGP when doing hypothesis testing has been shown to be important
to minimize the probability of type I error (see e.g.,|Davidson and MacKinnon| (1999)).

Estimation in the bootstrap world proceeds as in the original sample. First, we extract the largest
k; principal components for each group j, with j = 1,2, by applying the method of princ/ipal com-
ponents to each sub-panel. In particular, the T" x k; matrix Fj = ( Ajfkl, ceey fj’.kT ) contains
the estimated factors for each bootstrap sample generated from YJ* = FjAg + 5;7. The matrix F}

collects the eigenvectors corresponding to the k; largest eigenvalues of of YJ*YJ*’ JTNj (arranged in

[k ] Tk

decreasing order and multiplied by VT ), where we impose that jT i = Iy;. We then compute
R = VWi Vo Vs, where Vﬁc = FJ’»“’F,;‘ JT =T ', f;‘t fi/. The bootstrap test statistic is
& (k¢) = Zil p; = tr (A*1/2>, where A* = diag (P2 :1=1,...,k% is a k° x k° diagonal ma-
trix containing the k¢ largest eigenvalues of R* obtained from the eigenvalue-eigenvector problem
R*W* = W*A*, where W* is the k; x k¢ matrix eigenvector matrix.

As in the original sample, estimation by principal components using the bootstrap data YJ* implies
that each estimator f;t is consistent for H ]* fjt, a rotated version of fjt. The bootstrap rotation matrix
is defined as H} = V;-‘_IFJIFJ' N4

T N,
eigenvalues of Y}*Y]*’ /N;T on the main diagonal, in decreasing order. Contrary to H;, H ; 1s observed

, where VJ’»‘ is a kj x k;j diagonal matrix containing the k; largest

and could be used for inference on the factors as in |Gongalves and Perron| (2014). Here, the bootstrap
test statistic é* (k) is invariant to H ;f, but it shows up in the bootstrap theory. The bootstrap p-value
p* is based on Nv/T <€* (k¢) — kc>, where £ (k°) is centered around k¢ because we have imposed the
null hypothesis in the bootstrap DGP in .

Next, we characterize the bootstrap distribution of é * (k°). Following the proof of Theorem [2.1, we

expand R* around R* = V7'V Vo 'V, where V = 71T | fiefl, is the bootstrap analogue of

-~ ~ N ~ ~ ~ /
Vig=T"! Z;le fjtfl/qt Given , fj+ and fi; share a set of common factors ff (ie. fj; = ( o ;{)
for j = 1,2), implying that the k¢ largest eigenvalues of R* are all equal to 1 and & (k) is centered
around k¢. Note that this holds by construction, independently of whether the null hypothesis Hy
is true or not. As argued for the original statistic, the bootstrap distribution of é* (k¢) is driven
by the contribution of the factors estimation uncertainty (as measured by f;‘t - H j* f]t) to Ajk =

T-1 Zthl f]*t Al:; In particular, following the proof of Theorem the asymptotic distribution of

~ ~ ~ ~ ~ !/

£* (k°) is based on an asymptotic expansion of 7! Zthl < 4= Hj’ffjt) (f;t — H,;"fkt) up to order
Op+ ((5]7%,,) This crucial result is given in Lemma in Appendix B. It relies on Conditions A*  B*
and C*, which are the bootstrap analogues of Assumptions 3, 4 and 5. We call these bootstrap high

level conditions because they apply to any bootstrap method that is used to generate the bootstrap

" Although f/f; is defined as a function of fi: and does not depend on resampled data, we use this notation to indicate
that it is the bootstrap analogue of ‘7gk
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draws €7,. We will verify these conditions for the wild bootstrap in the next section.

The following result follows under Conditions A*-C*. We let U} = Nug(;)* - ug;)*, where ug?* de-

TN | . -
notes the first k¢ rows of u, = (N].*lA;.AJ) Nj_l/2 25\21 Aji€} i Similarly, we let 3y = T~ S B Uu,
which is the bootstrap analogue of ¥y = T~! Z?:l E (U]).

Lemma 3.1 Suppose that Conditions A*, B*, and C* hold. It follows that

T
. 1 ~ 1 1
& (k) =k + o=tr (S ) = ———=—= > (UUf — B (U'U;)) + Op- (Oy7) - (5)
2N (B ) QNﬁ\/T; —~-
=RB* —“'N,t

Lemma gives the asymptotic expansion of é* (k) and is the bootstrap analogue of in
Theorem The leading term in the expansion of é*(kc) — k¢ in is given by ﬁB*, where
B* = tr (f]g;) is the bootstrap analogue of B = tr (i;clf}u). Note that in the bootstrap world,
St =171 ZtT:1 fef¢ = Iie, which explains why 3% is omitted from the definition of B*. Under our
bootstrap high level conditions, ﬁl’)’* is of order O+ (N _1).

To show the asymptotic validity of the bootstrap test, we impose the following additional bootstrap

high level conditions. We define 2%, = Uty — E* (U"U;), and let Oy = Var* (ﬁ ST Z}i,’t).
Condition D* /T (B* — B) —, 0.

Condition E* /> 1= 51| 25, %, N(0,1), where @, = Var* (732 51, 25, ) is such that

O, — Yy — 0.

Theorem 3.1 Assume Assumptions 1-6 hold and Hg is true. Then, any bootstrap scheme that verifies

Conditions A*-E* is such that

_ A 1 *
NVTQ,,M? <g* (k) — k° + 2NB> 4 N(0,1),
which implies that p* L\ Upo,)-

Condition D* requires the bootstrap bias B* to mimic the bias term B. In particular, B* needs
to be a v/T-convergent estimator of B. Having B* — B = o, (1) does not suffice. The main reason
for the faster rate of convergence requirement is that the asymptotic bias term (2N)~1B is of order
O, (N _1) and since the convergence rate is Nv/T, this induces a shift of the center of the distribution
of order O, (\/T ) So, contrary to more standard settings where the asymptotic bias is of order O (1),
here the asymptotic bias diverges. However, any v/T-consistent estimator of B can be used to recenter
¢ (k) — k¢ and yield a random variable whose limiting distribution is N (0, €%,). Condition D* requires
that the bootstrap bias B* has this property. Condition E* requires that the bootstrap array Z]’(Lt
satisfies a central limit theorem in the bootstrap world with an asymptotic variance-covariance matrix

€, that converges in probability to ;. This condition is the bootstrap analogue of Assumption 6-(b)
in Appendix A.

11



We discuss a few implications of our bootstrap high level conditions. The first one is that for the
bootstrap to mimic the asymptotic bias term B (as implied by Condition D*) we need to generate o
in a way that preserves the cross-sectional dependence of €;;. Serial dependence in €;; is asymptotically
irrelevant for this term. The reason for this is that B depends only on the cross-sectional dependence
but not on the serial dependence of ¢;;, as we explained in the previous section.

The second implication is that in order for the bootstrap to replicate the covariance € (as required
by Condition E*) we need to design a bootstrap method that generates ej; with serial dependence (in
addition to cross-sectional dependence). This can be seen by noting that %, is the long run variance
of ﬁ Z;le ZnN,, which depends on both the serial and the cross-sectional dependence properties of
{eje}-

The overall conclusion is that the implementation of the bootstrap depends on the serial and cross-
sectional dependence assumptions we make on the idiosyncratic errors of each sub-panel. Different
assumptions will lead to different bootstrap algorithms. Theorem is useful because it gives a set
of high-level conditions that can be used to prove the asymptotic validity of the bootstrap for any
bootstrap scheme used to obtain £7,.

To end this section, we discuss the asymptotic power of our bootstrap test. Although Conditions
A*-E* suffice to show that p* 25 0 under Hi, a weaker set of assumptions suffices. In particular,
the following high level condition is sufficient to ensure that any bootstrap test based on &* (k°) is

consistent.
Condition F* ﬁ ST 251 =0p(1) and B* = O, (N'7€), where € is some positive number.

Proposition 3.1 Under Assumptions 1-6, any bootstrap method that verifies Conditions A*-C* and
F* satisfies p* =5 0 under H;.

Since we reject Hg if p* < «, Proposition ensures that P(p* < a) — 1 when Hj is true.

4 Specific bootstrap schemes

4.1 The wild bootstrap method

Here, we discuss a wild bootstrap method and show that it verifies Conditions A*-F* under a set of
assumptions similar to those of Theorem 2 in AGGR(2019). Algorithm [1| below contains a description
of this method.

12



Algorithm 1 : Wild Bootstrap

1. Fort=1,...,T,and j = 1,2, let o
y;t :Ajfjt"i‘é_;ftv

fel Fsi

~ !/
I / * * * :
where f;; = (f', f;;)" and €}, = (sﬂt, e ,EjJVjt) is such that

€]t = EjitNits
and 74 are i.i.d. N (0,1) across (j,1,t).

2. For j = 1,2, estimate the bootstrap factors F ]’-k by extracting the first k; principal components
from y7;, and set
. 1oaa
;l( = TF;/F‘Z*a ]7l =1,2,
and
R = V1*1_1V1*2 V2>‘<2_1V2*1-
3. Compute the k¢ largest eigenvalues of R* and denote these by p72, l=1,... k"
4. Compute the bootstrap test statistic £* (k°) = Z;il pf-

5. Repeat steps 1-4 M times and then compute the bootstrap p-value as
1 & .
P (W () < £())

M
b=1

where £*() (k¢) is the value of the bootstrap test for replication b=1,..., M.

6. Reject the null hypothesis of k¢ common factors at level « if p* < a.

To prove the asymptotic validity of the wild bootstrap p-value, we strengthen the primitive as-

sumptions given in Appendix A as follows.

Assumption WB1 For j = 1,2, {fj;} and {¢;;} are mutually independent such that E||f;||3? <
M < oo and Elg; 432 < M < oo for all (4,t).

Assumption WB2 (a) Cov(ejt,e5s) =0if j# kori#1lort#s,and (b) E(s?zt) =1 > 0.
Assumption WB3 For each j =1, 2,

T .
(a) ﬁ > i1 €5l — B(E5 485 1) = Op(1) for any i, k.

— Op ( lOg,TNJ>

1 T
T Dot=1 fit€iit

(b) maXiSNj

2
© £ [R5 5e < ar
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Assumption WBI1 strengthens the moment conditions in Assumption 2 and Assumption 3-(a). A
larger number of moments of fj; and ¢} ;; is required here than in GP (2014) (who require the existence
of 12 moments rather than 32). As explained above, our bootstrap test statistic é* (k°) involves
products and cross products of bootstrap estimated factors from each sub-panel. The derivation of
the bootstrap asymptotic distribution of f* (k°) relies on Lemma which obtains an asymptotic
expansion of 7T~! Zthl ( A;t — Hj*fjt> <f;;t - H]:fkt>, up to order Op- ((5;;}) This requires not only
the verification of Conditions A* and B* from GP (2014) (who obtain an asymptotic expansion of
TS (F - HiF) (B~ Hidie) np to order Oy (833), but also of Condition C¥, which is new
to this paper. The large number of moments is used in verifying this condition. In particular, we rely on
repeated applications of Cauchy-Schwarz’s inequality, and bound sums such as ﬁ 25\21 Zthl |€;,it P
for p < 16, which requires the existence of 2p moments of f;; and €;; (see Lemma C.1).

Assumption WB2 rules out cross-sectional and serial correlation in the idiosyncratic errors of each
sub-panel as well as correlation among ¢;; and €, for j # k. These assumptions are similar to the
assumptions used by AGGR(2019) to justify their feasible test statistic (see their Theorem 2). For
simplicity, we assume the external random variable 7;;; to be Gaussian, but the result generalizes
to any i.i.d. draw that is mean zero and variance one with finite eight moments and a symmetric

distribution.

Theorem 4.1 Assume that Assumptions 1-6 strengthened by Assumptions WB1, WB2, and WB3
hold. Then, if Algorithm [1] is used to generate ezft for j = 1,2, the conclusions of Theorem and

Proposition apply.

Theorem justifies theoretically using the wild bootstrap p-value p* to test the null hypothesis
of k¢ common factors. Although Assumption WB2 rules out dependence in ¢j; in both dimensions,
as in Theorem 2 of AGGR(2019), this bootstrap test does not require an explicit bias correction
nor a variance estimator. We show in Section 5 that the feasible test statistic AGGR(2019) can be
oversized even under these restrictive assumptions. The wild bootstrap essentially eliminates these

level distortions.

4.2 An extension: AR-CSD bootstrap method

Here, we discuss an extension of the wild bootstrap that allows for cross-sectional and serial dependence
in the idiosyncratic error terms of each sub-panel. In particular, we assume that for each j = 1,2, and

i=1,...,Nj, the idiosyncratic errors ¢;;; follow an AR(p) model (autoregressive model of order p):
gjit = aji (L) €j0-1 + vjit, (6)

where aj; (L) = aji1 +ajioL + ... + aj@p_le*l. If we collect all observations ¢ for panel j, we can
write this as e;; = A;j (L) €j—1 + vjt, where A; (L) = Aj1 + AjoL + ...+ Ajp—1LP~! and Ajy, are

N; x N; diagonal matrices with coefficients aj;  along the main diagonal. Since Nj is large, consistent
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estimation of A;} is not feasible unless we impose some form of sparsity. Assuming that each series
€j.4t is an autoregressive process with possibly heterogeneous coefficients is a restrictive form of sparsity
which allows the use of OLSﬂ In addition, we assume that

,th ~ lld (07 EU»j) ? EU,j = (ryjﬂl)l,lzl,,NJ :
The fact that we allow for a possibly non-diagonal covariance matrix X, ; means that we allow for

cross-sectional dependence in the innovations vj;.

*
Jt

resamples the residuals of the AR model (). Resampling the vector of the AR(p) residuals ¢, allowing

Our proposal is to create bootstrap observations €%, using a residual-based bootstrap procedure that
for unrestricted cross-sectional dependence is complicated due to the fact that the covariance matrix
¥y, is high dimensional. In particular, i.i.d. resampling of ¥;; is not valid, as shown by |Gongalves
and Perron| (2020) in the context of factor augmented regression models. Our bootstrap algorithm
(described in Algorithm [2)) relies on the cross-sectional dependent (CSD) bootstrap of Gongalves and
Perron (2020). In the following, we let iv,j denote any consistent estimator of ¥, ; under the spectral
norm. Examples include the thresholding estimator of Bickel and Levina| (2008a)) and the banding
estimator of Bickel and Levina/ (2008b).

Algorithm 2 : AR-CSD Bootstrap

1. Fort=1,...,T,and j = 1,2, let o
y;t :Ajfjt‘f‘gjta

~ ~ ~ /
_ cl s/ * * * e
where f;r = (f¢, fj{) and €}, = <5j71t, e ,5]-7th) is such that
* ~ * *
Ej,it = a]l (L) gj,i,tfl + vj,it’ fOl‘ t = 1, e 71—1

with 5; o0=0fori=1,...,N; and where v;’»‘ i is i-th element of v;t obtained as

=Nl h is i4.d.V (0,1

v, = X, nje,  where nj is 1.i.d. ( , Nj) over t.

2. Repeat steps 2 through 6 of Algorithm

The wild bootstrap algorithm (Algorithm[]) is a special case of Algorithm 2] when we set aj; (L) = 0
for all ¢ and f]v,j = diag (éjgzt> Another special case is the cross-sectional dependent (CSD) bootstrap
of Gongalves and Perron| (2020), which sets aj; (L) = 0 and lets 3, ; denote the thresholding estimator
based on the sample covariances of ;. Finally, a generalization of Algorithm [2|is the sieve bootstrap
proposed by Koh! (2022) in the context of MIDAS factor models. Although it would be interesting to

extend the sieve bootstrap to our testing problem, we focus on a class of finite order AR models here

8We could allow for richer dynamics by assuming a sparse VAR model for the idiosyncratic error vector ¢, as in
Kock and Callot| (2015), [Krampe and Paparoditis| (2021), and Krampe and Margaritella) (2021). Under sparsity, we
would estimate A; (L) by a regularized OLS estimator such as LASSO rather than OLS. The remaining steps of our
bootstrap method would remain the same.
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in order to simplify the analysis.

The proof of the asymptotic validity of Algorithm 2 follows from Theorem and Proposition
by verifying Conditions A* - F*. Since €54 1s both serially and cross-sectionally correlated, the
verification of these bootstrap high-level conditions is much more involved than for the wild bootstrap
and beyond the scope of this paper. However, we evaluate by simulation the performance of both

Algorithms 1 and 2 in the next section.

5 Simulations

In this section, we compare the performance of the bootstrap methods discussed in the previous
sections. Our data generating process (DGP) is a simple model with one factor for each group:

Y1t Ar 0 |fue
Yot 0 A

E1t

+ : (7)

fot
where y;; and €;; are Nj x 1 fort =1,...,T. As opposed to |Andreou et al|(2019), we assume that

Eat

both groups have the same frequency.

For level experiments, we let fi; = for = ff. As in |Gongalves and Perron (2014)), this common
factor is generated independently over time from a standard normal distribution, ff ~ i.i.d.N(0,1).
For power experiments, each group has a specific factor fi; = f{;, and fo = f5,. These two group-
specific factors are also generated independently over time from a bivariate normal with unit variance
and correlation ¢ = 0.99. In all cases, the factor loadings are drawn independently from a standard
normal distribution, A; ~1i.d.N(0,1), j =1,2.

The idiosyncratic error terms in the model, e, = (¢!, ¢5,)’, are such that
&t = AgEt—l + vt

where A, is a block-diagonal matrix

A=

aE,].INl 0(N1><N2)
O(N2><N1) as,ZINg

and a. j is the AR(1) coefficient in group j (we assume that all individual series in each group share
the same autoregressive coefficient). The innovations in the idiosyncratic error terms, v, = (v}, v5,)’,

are such that:
V1t ~ N(Oa (1 - ag,l)zv,l)a V2t ~ N(O7 (1 - a§,2)2v72),
where X, 1 is the first diagonal block and ¥, 2 is the second diagonal block of

_ e, O, xNo)

b)) i
° Oy % AY) {81 e v

The scalar 8 induces cross-sectional dependence in each group among the idiosyncratic innovations.
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Table 1: Data generating processes

DGP ‘ s ‘ Qg2 ‘ B
Design 1 (no serial & no cross-sectional dependence) | 0 0 0
Design 2 (only serial dependence) 051]103| 0
Design 3 (only cross-sectional dependence) 0 0 |02
Design 4 (serial & cross-sectional dependence) 0.5 103 1]0.2

Table 2: Sample sizes in simulation experiment

Ny | Ny | T
50 | 50 | 50
50 | 50 | 100
50 | 50 | 200
100 | 100 | 50
100 | 100 | 100
100 | 100 | 200
200 | 200 | 50
200 | 200 | 100
200 | 200 | 200

This is similar to the design in |Bai and Ngj (2006)). Note that we assume that ¥, is a block diagonal
matrix, so we do not consider dependence between the two groups. In[Table 1] we report the parameter
settings we consider.

In Design 1, we assume that there is no serial correlation and no cross-sectional dependence and
that the idiosyncratic errors are homoskedastic. The idiosyncratic error terms in Design 2 are serially
correlated in each group where the AR(1) coefficient in group 1 is larger than the one in group 2. In
the third design, we consider cross-sectional dependence without serial correlation in the idiosyncratic
error term. Finally, in the last design, the idiosyncratic innovation terms are both serially and cross-
sectionally correlated.

We consider sample sizes Ny = Ny = N between 50 and 200 and T between 50 and 200. We
simulate each design 5000 times, and the bootstrap replication number is set at 399. We use the
bootstrap algorithms proposed in Sections 3 and 4 with four different bootstrap methods: the wild
bootstrap, the AR(1)-CSD bootstrap proposed earlier and two variants: a parametric AR(1) bootstrap
with no cross-sectional dependence and a CSD bootstrap with no serial dependence. The CSD and
AR(1)-CSD bootstraps involve an estimator of the covariance matrix of the idiosyncratic errors. We
rely on the banding estimator of Bickel and Levinal (2008b|) with the banding parameter k chosen by

their cross-validation procedure. We focus our results on v = 0.05 and report rejection rates for each
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Table 3: Rejection rate of 5% test - level

N =50 N =100 N =200

T=50 100 200 | T =50 100 200 |7 =50 100 200

AGGR 65 49 33| 74 62 50] 83 72 62

Design 1 WB 53 49 43| 58 57 51| 67 64 56
o AR (1) 50 49 41| 59 56 51| 67 61 58
CSD 61 59 56| 60 57 56| 67 62 6.0

AR(1-CSD | 73 67 58| 75 68 63| 84 73 67

AGGR 143 100 7.7 | 152 124 98 | 177 138 108

Design 2 WB 98 87 80| 104 98 89 | 125 107 9.3
AR AR (1) 49 47 42| 59 57 48| 69 59 54
CSD 11.9 125 14.7| 115 115 114 | 130 11.0 10.1

AR(1-CSD | 64 62 61| 72 70 63| 78 71 62

AGGR 216 189 205| 204 175 169| 208 168 14.2

Design 3 WB 159 165 20.3| 150 145 158 | 152 134 126
CSh AR (1) 96 117 150| 89 95 10.7| 87 80 84
CSD 72 82 82| 88 87 74| 105 94 83

AR(1-CSD| 58 53 53| 63 56 49| 69 62 58

AGGR 216 189 205| 204 175 169| 208 168 14.2

Design 4 WB 157 166 20.1| 151 147 158 | 152 13.8 124
AR+ 0sp | AR 96 116 150| 86 94 106| 87 82 82
CSD 75 80 80| 89 82 77| 105 94 84

AR(1)-CSD | 54 53 51| 65 58 49| 71 61 57

design, bootstrap method, and sample size.

The simulation results for the level experiments are shown in The row labeled “AGGR”
reports results based on the asymptotic standard normal critical values. The other four rows contain
the results for the bootstrap methods: WB for wild bootstrap and AR(1) for parametric AR(1) boot-
strap method, CSD for the cross-sectional bootstrap, and AR-CSD for the bootstrap that combines
the autoregressive and cross-sectional dependent bootstrap.

Under the restrictive Design 1 where the assumptions of Theorem 2 of |/Andreou et al.| (2019)) are
satisfied, the asymptotic theory performs reasonably well, although some distortions appear for the
smaller value of T. For the other three designs, we find severe over-rejections for all sample sizes,
as expected given that the statistic is computed assuming away autocorrelation and cross-sectional
dependence.

In all sets of samples and designs, bootstrap methods provide more reliable inference than standard
normal inference. The bootstrap method that performs best is typically the one tailored to the
properties of the DGP. For example, in Design 1, both the wild bootstrap and the AR(1) bootstrap

perform similarly, and they reject the null hypothesis at a rate close to 5%. To illustrate, for N7 =
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Ny = 100 and T = 50, the test rejects in 7.4% of the replications using the standard normal critical
values. The rejection rates for the wild bootstrap and AR(1) bootstrap are 5.8% and 5.9% respectively.
On the other hand, the cross-sectional bootstrap and combined AR(1) and CSD bootstrap reject in
6.0% and 7.5% of the replications. This higher rejection rate is the cost of using a more robust method
than necessary.

As mentioned above, in Designs 2 - 4, the feasible statistic in |[Andreou et al.| (2019)) leads to large
level distortions since it is not robust to serial correlation or cross-sectional dependence. Because
there is serial dependence in the idiosyncratic error terms in Design 2, the wild bootstrap and CSD
bootstrap are no longer valid while still improving on the use of the standard normal critical values.
In this case, both the AR(1) and AR(1)-CSD bootstraps are valid and provide similar results with a
slight preference for the simple AR(1) bootstrap. To illustrate, with the same N3 = Ny = 100 and
T = 50 as above, the standard normal critical values lead to a rejection rate of 15.2% for a 5% test.
The (invalid) wild and CSD bootstraps have rejection rates of 10.4% and 11.5% respectively. On the
other hand, the (valid) AR(1) and AR(1)-CSD bootstraps have rejection rates of 5.9% and 7.2%.

In Designs 3 and 4, where we introduce cross-sectional dependence, neither the wild bootstrap nor
the AR(1) bootstrap are valid and they are not performing well, as expected. In the most general design
with both serial and cross-sectional dependence, only the AR(1)-CSD bootstrap provides reliable
results. While the asymptotic theory in the N1 = Ny = 100 and T" = 50 case shows a rejection rate
of 20.4%, the AR(1)-CSD bootstrap has a rejection rate of 6.3% compared with 8.8% for the CSD
bootstrap, 8.9% for the AR(1) bootstrap, and 15.0% for the simple wild bootstrap.

Our power results are presented in These results must be interpreted with caution given
the large level distortions documented in some cases. For the simple i.i.d. case (Design 1) where all
tests have reasonable rejection rates under the null, we see that the bootstrap entails a small reduction
in power relative to the AGGR test. The largest loss occurs for N1 = No =T = 50 where the AGGR
test has a power of 65.2% while the wild bootstrap rejects in 61.5% of the cases. The gap between the
two methods disappears as sample size increases in both dimensions.

It is interesting to note that power increases faster in the cross-sectional than in the time series
dimension. Going from N = 50 to N = 100 for given 7" has more impact on power than going from
T =50 toT' = 100 for given N. This is consistent with the different rates of convergence of the statistic
in the two dimensions.

Finally, we see that more complex idiosyncratic dependencies lead to a reduction in power for
bootstrap methods that control level. Nevertheless, power approaches one rather quickly.

Overall, our results suggest that except for the simple case with no serial or cross-sectional depen-
dence and large sample sizes, the use of standard normal critical values leads to large level distortions.
On the other hand, a bootstrap method that adapts to the properties of the idiosyncratic terms pro-
vides excellent coverage rates, while a misspecified bootstrap still improves matters noticeably. The

use of more robust bootstrap methods has a small cost in terms of power.
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Table 4: Rejection rate of 5% test - power

N =50 N =100 N =200
T'=50 100 200 | T'=50 100 200 | T =50 100 200
AGGR 65.2 835 964 | 964  99.7 100.0 | 100.0 100.0 100.0
Design 1 WB 61.5 83.0 972 | 955 99.7 100.0 | 100.0 100.0 100.0
iid AR (1) 60.8 834 974 | 952 99.6 100.0 | 99.9 100.0 100.0
CSD 58.9 796 929 949 99.6 100.0 | 100.0 100.0 100.0
AR(1)-CSD | 620 81.0 93.7| 956 99.7 100.0 | 100.0 100.0 100.0
AGGR 70.1 849 96.0| 96.7 99.8 100.0 | 100.0 100.0 100.0
Design 2 WB 61.3 823 96.0| 951 99.6 100.0 | 99.9  100.0 100.0
AR AR (1) 489 742 933 | 90.1 99.3 100.0 | 99.8 100.0 100.0
CSD 61.5 799 927 | 943 995 100.0 | 99.9  100.0 100.0
AR(1)-CSD | 50.0 716 875 | 90.3 99.2 100.0 | 99.9 100.0 100.0
AGGR 684 843 944 | 963 99.6 100.0 | 100.0 100.0 100.0
Design 3 WB 64.7 839 950 | 952 995 100.0 | 100.0 100.0 100.0
cSD AR (1) 639 834 951| 951 995 100.0 | 100.0 100.0 100.0
CSD 46.1 66.3 83.1| 91.7 99.0 99.9 99.9  100.0 100.0
AR(1)-CSD | 51.3 69.1 846 | 929 99.1 100.0 | 100.0 100.0 100.0
AGGR 73.3 8.0 943 | 969 99.7 100.0 | 100.0 100.0 100.0
Design 4 WB 654 826 944 | 949 995 100.0 | 100.0 100.0 100.0
AR + CSD AR (1) 3.5 751 91.7 ] 90.5 99.1 1000 | 99.9  100.0 100.0
CSD 488  66.5 838 | 91.3 99.0 100.0 | 99.9  100.0 100.0
AR(1)-CSD | 40.0 572 754 | 858 98.0 99.0 99.8  100.0 100.0
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6 Conclusions

In this paper, we have proposed the bootstrap as an inference method on the number of common
factors in two groups of data. We propose and theoretically justify under weak conditions a simple
bootstrap test that avoids the need to estimate the bias and variance of the canonical correlations
explicitly. We have verified these conditions in the case of the wild bootstrap under conditions similar to
those in AGGR/(2019). However, other approaches tailored to more general data generating processes
are possible. Our simulation experiment shows that the bootstrap leads to rejection rates closer
to the nominal level in all of the designs we considered compared to the asymptotic framework of

AGGR(2019).
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A Asymptotic theory

This Appendix is organized as follows. In Appendix A.1, we provide a set of primitive assumptions
under which we derive the asymptotic distribution of f (k¢). Appendix A.2 contains auxiliary lemmas
used to derive this limiting distribution. Appendix A.3 provides a proof of the results in Section 2.4.
When describing our assumptions below, it is convenient to collect the vectors ff, fi, and f3, into a

vector Gy = (ff, i1, f5)', whose dimension is k¢ + k§ + k5.

A.1 Primitive assumptions

Assumption 1 We let N,T — oo such that % — 0, and TQ’/2 — 0, where N = min (N1, N3) = Ny
and puy = +/No/N1 — p € [0,1].

Assumption 2

(a) E(Gy) = 0 and E||G¢||* < M such that %Zthl GG} —p g > 0, where X¢ is a non-random

positive definite matrix defined as

Ie 0 0
0 O I
(b) For each j = 1,2, the factor loadings matrix A; = (X\j1,---,A;n;)" is deterministic such that

[Ajill <M and X ; = limpy; 00 AjA;/N;j > 0 has distinct eigenvalues.
Assumption 3 For each j = 1,2,
(a) E(gj,it) = 0, E(’&j,lﬂg) <M for any i,t.

(b) El(gjitcjis) = Tjites, |jites] < Gja for all (t,s) and |oj4s] < 7j4s for all (i,1) such that
N, _ 1T
N i Ot < M TN Tias < M and g 30 |0gaes] < M.

4
< M for every (t, s).

NA
(c) E ’\/Iﬁ i (€jasejie — E(ejis€j.it))
J
Assumption 4 For each j = 1,2,

(a) E (N%. R i Gtgj,it||2) < M, where E(Gyej) = 0 for all (i,1).

2
<M.

N.
(b) For each s, E H \/}Tj Y1 Yoot Gelejasesit — Eejisesit)

2
<M.

2
)SM.

(c) EH \/;szle Giely A

@ F (;zzl

1 A/
L Ale.
N, it
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Assumptions 2-4 are standard in the factor literature. In particular, Assumptions 2-(a) and 2-(b)
impose standard conditions on the factors and factor loadings, respectively. They are identical to
Assumptions A.2 and A.3 of AGGR(2019). Assumption 3 imposes standard time and cross-section
dependence and heteroskedasticity in the idiosyncratic errors of each panel and corresponds to As-
sumption 2 of GP(2014). Finally, Assumption 4 imposes conditions on moments and weak dependence
among {G;} and {e;; } . This assumption corresponds to Assumption 3(a)-(d) in GP(2014). Note that
given Assumption 2-(b), which assumes the factor loadings to be deterministic, we can show that As-

sumption 4-(d) is implied by Assumptions 2-(b) and 3-(b). To see this, note that we can write

2 N, N; N N
1 AL 1
N, Nej|| = M;;Mﬂj,l E(gjucjn) < NJ;E_: (Njihja| 7 < MN ;;% il

S&j,il by ASS—S(b)

given that Assumption 2-(b) and Cauchy—Schwartz’s inequality imply that we can bound ‘A;',z)‘j,l‘ =

kj 1/2
‘ijzl Aj@k%lk’ = (Zk 1A zk) (Zk 1A m) = [1Az
follows from Assumption 3-(b) which bounds Wj > :jl Zf\gl ;i by M for all t. The reason why we

[Nl £ M. Assumption 4-(d) then

keep Assumption 4-(d) is that we will give its bootstrap analogue in Appendix B.1. Note also that, as
stated in GP(2014), we can show that Assumptions 4-(a) and (c) are implied by Assumptions 2 and
3 if we assume that the factors and the idiosyncratic errors are mutually independent. Assumption
4-(b) in turn holds if we assume in addition that T_QNJ-_1 quzl Zf\ﬁl |Cov (g5,it€j,is: €4,it€j,iq) | < M,
which follows if €;;; is i.i.d. and E ( €5, zt) < M.

A key step in deriving the asymptotic distribution of the AGGR(2019) test statistic (and of its
bootstrap analogue) under our Assumption 1 is to obtain an asymptotic expansion of the factors
estimation uncertainty (as characterized by % Zthl (fjt - ijjt) (fkt - kakt>/ for j,k € {1,2} up
to order ﬂ Op N4T)). See Lemma in Appendix A.2. As it turns out, Assumptions 1-4 are not
sufficient to ensure this fast rate of convergence. For this reason, we strengthen Assumptions 1-4 as

follows.

Assumption 5

. N; N; _
(a) For each t and j = 1,2, Zstl |vj,st) < M, where v o = E(N% Yoy Ejis€iat) and Y 7 i < M.

. LA
(b) For any Jj, kv ﬁ ZZ:I ij Zf:l 7]'75'5% = Op (1)

EktAk

(c) For any j, 7TZs IHZt 1 Vst /N, :Op(1)~

() Forany j,k, J= S0 fiok S01 (Fy S0 Aiekin (giseiie = B(ejiszian))) = Op(1), where N =
min(Nl, NQ).

9This means that it contains terms of order Oy (657) and a remainder of order O, (Sx7)-
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. T T N; N,
(e) For any j.k, <=3, 1 fis T D \/ﬁ D=1 Doy Minhiint (EjinsEiint — E(€j158510)) =
Op(1).

2
(f) For any j, k‘, %2321 H% Z?:l (TIN Ef\il )\k,iek,it(gj,is5j,it — E(Ej,isgj,it))) H = Op(l), where N =
min(Ny, Na).

2

(g) For any j, k, %23:1
Op(1).

T Nj N,
% Zt:l <\/ﬁ Ziljzl Zigl;il )‘k,i25k,i2t(5j,i155j,i1t - E(sjyilsej»ilt))>

Assumption 5-(a) is a strengthening of Assumption 3-(b) and corresponds to Assumption E.1 of
Bai (2003). A similar assumption has been used by AGGR(2019). See in particular their Assumption
A.7(c) on f;;. As explained by Bai (2003), this assumption is satisfied when we rule out serial
dependence, implying that v, = 0 for s # t. In this case, Assumption 5-(a) is equivalent to requiring
that N% Zf\ﬁl B (53“5) < M. More generally, this condition holds whenever for each panel j and each
series 4, the autocovariance function of {e;;} is absolutely summable (thus covering all finite order

stationary ARMA models).

Al e
VN
tion, we can rewrite part (b) as % Zzzl fism’y. o = Op (1) and part (c) as + Z;F:l HmthH? =0, (1).

The latter condition holds if E ||mp, 8H2 < M for all j, k, s, which follows if part (a) holds and if we as-
sume that E ||up||* < M for all k, . To see this, note that F Hmjk,s||2 =F [(Zthl Vj,stvfct> (Zszl ’Yj,slvkl)] =

T T / L T T 2\ /2 2\ 1/2
S S Vst B (vhom), which is bounded by 11 Y0 [atl [l (B llowal?) ™ (E low]?)
by Cauchy-Schwarz’s inequality. If E |Jup||> < M for all k¢, we can use Assumption 5-(a) to verify

To interpret Assumptions 5-(b) and (c), let vg =

and mjj s = ZZ;I V4,stVkt- With this nota-

Assumption 5-(c). The assumption that E ||ug|[*> < M for all k,t is a strengthening of Assumption
4-(d) and both are equivalent if we assume stationarity of {ey;}. Hence, Assumption 5-(c) holds under
general serial and cross-sectional dependence in the idiosyncratic error terms.

A sufficient condition for Assumption 5-(b) is that E ’% Z?:l /i sm;. hs ? < M. We can show that
this condition is implied by Assumptions 3-(b) and 5-(a) if we assume that { f;;} and {ej} are mutually
independent. We can verify Assumptions 5-(d) and (e) by showing that 1 23:1 Zszl E(AY Ajk,s) <
M and % Z;F:l Zszl E(B}klejk,s) < M, where Ajj, s = % ZZ;I <\/17N Zf\;l Ak,i€k,it(€],is€j,it — E(sj,issjvit))>
and Bjis = ﬁ Z;le \/ﬁ Zf\szl Zg’;“ ANkin€k.iot (€5,irs€j.it — E(Eji15€5.i1¢)), which holds for in-

stance if €;;; is i.i.d. with E(sjlt) = 0 and E(e?’l-t) < M for j = 1,2. Similarly, we can show that

Assumptions 5-(d) and (e) are verified under similar conditions on €; .
Our next assumption is a high level condition that allows us to obtain the asymptotic normal

distribution for the AGGR test statistic.

Assumption 6

(a) See= AT fefe is such that £, — Ie = O, (T71/2).
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(b) ﬁ Zthl ULy — E (UU)) =% N (0,9), where U = ,uNug? - ug;) and ug? is a k¢ x 1 vector
A;.Aj)—l Aieji

Nj \/Nj.
c/

Assumption 6-(a) strengthens Assumption 2-(a) by requiring that % ZZ;I fEff converges to Iye

containing the first £ rows of uj; = (

at rate O, (T -1/ 2). This assumption is implied by standard mixing conditions on f{ by a maximal
inequality for mixing processes and has been used in this literature. See e.g., |Goncalves, McCracken,
and Perron| (2017). AGGR(2019) assume factors to be mixing, explaining why they do not explicitly
write this assumption. It is used to omit 3. from the term ﬁ S (UU; — E (UUy)) that appears in
the asymptotic expansion of the test statistic. Assumption 6-(b) is a high level condition that requires
the time series process Zn¢ = (UUy — E (UUy)) to satisfy a CLT. AGGR(2019) provide conditions
under which this high level condition holds. See in particular their Assumptions A.5 and A.6, which
are used to show that Zy; is a NED process. Since our contribution is proving the bootstrap validity
in this context, we do not provide these more primitive conditions. They are not required to prove
our bootstrap theory.

Note that our assumptions (in particular, Assumptions 2-(b) and 4-(d)) imply that

T T

Syu=T""1 Z E (Uhy) = piSun +Su o2 — inSui2 — v Suor, with Sy =771 Z E (uﬁ)u,(ft)’) )
t=1 t=1

is O (1). This term enters the bias B = tr (f]c_cliu> that appears in the asymptotic distribution of

the test statistic.

A.2 Asymptotic expansion of the sample covariance of the factors estimation error

The main goal of this section is to provide an asymptotic expansion of % Z;le (f e — Hjf jt) (f kt — Hp, fkt>,
for j, k € {1,2} up to order O, ((5&1}), which is then used to characterize the bias term. See Lemma
in Appendix A.3.

To derive this result, we use the following identity for each group j, which follows from Bai (2003):

~

fit = Hjfie =V (Ajue+ Ajor+ Ajse+ Ajar) - (8)
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Each of the terms Aj;1; through A; 4 is defined as follows:

T j
1 A . 1
Ajir = T Z JisVjst, With vt = E(F Z€j,z‘s€j,z't);
s=1 J =1
1 1
Ajor = T Z fisCjst, with G = N Z(5j,i55j,it — E(gj,is€jit));
s=1 7 =1
T /
1 A . Nej
Aj,?)t = T Z fjsnj,sta with Nj,st = Z N fjsgj it = / ]7?3 and
— j
T
1 . ) Ne;
Ajae = T Z fjs&jst» With & 5 = f;t% = 7)jts-
s=1 J

The following auxiliary lemma is used to prove Lemma

Lemma A.1 Suppose Assumptions 1-4 strengthened by Assumption 5 hold. Then, for any j k €

{1 2} (a) Zt 1 J,ltAk 1t — Op (5&4T) (b) Zt 1 J72tAk: 2t — Op (617;) ) (C) %erzl Aja4tA;c,4t =
((SN‘;) (d) Zt 1 jmtAk = 0p (51\;}) for m # n, where m,n € {1,2,3,4}; and (e)

A;Aj>—1 Ay

T
1
E Aj s Aj 4H4—E wpul, HiV, = O, (N7Y), where wu; :( .
5,3t 3¢ = \/]7 Jthl Jt Lt E Vi P( ) jt Nj \/ﬁj

Lemma A.2 Suppose Assumptions 1-4 strengthened by Assumption 5 hold. Then, for j, k € {1,2},

1

T T

1 N A ! 1

T (fjt - ijjt) (fkt - kakt) = WHJ <T Z“ﬁ“%t) Hj, + Oy (Oy7) 5
t=1 t=1

where uj is as defined in Lemma[A.]]

Proof of Lemma Part (a): We can bound the norm of + Zt 1 Ajat Al 1 by

L T L T L T 1/2 L T 1/2
7 2 A Al = 7 D 14l 14k 2] < (T > HAJ-,un?) (T > rAk,un?) ,
t=1 t=1 t=1 t=1

where the first equality follows by the fact that for any vectors A and B we have that |AB'|* =
tr (AB'BA') = tr (A’AB'B) = || A||* | B||* given the definitions of the Frobenius norm of a matrix and
of the Euclidean norm of a vector. The inequality then follows by the Cauchy-Schwartz inequality.
Next, we show that A& Zt 1 1A, s (5]7;) for any j, which implies the result. To show this,
write Aj 14 = A;l)t + A;l)t, where

T
1) ETZ(fJS Hf]s) Vj,st and A§ JTZfJSIYJSt

Since |43, + 4%, | < ( A0 +HAJHH) we have that ST, 14,0l < 24 57, A8+

2
27 thl HAj,ltH = 2I1 + 2I1;. We analyse each term separately. First, by an application of the
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triangle inequality and the Cauchy-Schwartz inequality,

T 2

1
ITESY

t=1

T
1 .
T > (fis = Hfis)vjst
s=1
since T1 Zle Hfjs—ijjSHQ =0, (6_%) and ZST:1 1v;.5t/* = O (1) given Assumptions 1-5. Similarly,
we can show that ||II1]| = O, (T~2) = O, (0y7) by using Markov’s inequality and noting that

14 1 Tl 1
T Z E T Z fisVist|| < T Z E (TQ Z Z fg,‘lfj87j,st7j7lt> )
=1

= s=11=1

ZHst Hj fis| |2 ZZ"Y] st’ 5NTT ) Op((siér)a

t=1 s=1

where

T T
1 1 1
E (T2 E E f]/‘lfjs’)/j,st’}’j,lt) = T2 § ZE - E( jlf]s) Y3, st’Y],lt = T2 § |’7j st‘ < CiTQ-

s=11=1 s=1 s=1
<A by Ass-2(a) N e
<M? by Ass-5(a)

Note that to obtain this last bound, we impose Assumption 5-(c), which is a strengthening of Assump-
tion 3.

Part (b): we proceed as in part (a) and show that T 327 || A% = O,(0y7) for any j € {1,2}.
Adding and subtracting appropriately, 7 ZZ:l [Aj2e* <2771 Z?:l HA§-712)75||2—|—2T_1 Z?:l \|A§722)t||2 =
21y + 21, where A, = TV (fi — H;f5)Gor and AQ), = TV Hf5ar, with G =
Nj_1 Zf’vzjl(gj,isgj,it — E(gjis€j,it)). First, note that

T T T
1 A 1 _ _ _
< (T Z I fjs — ijjs||2> <T2 Z Z |Cj,st|2> = Op(5N2TNj ") = Op(6x7);
s=1 t=1 s=1

since 7 S ST G = Op(Nj_l) by Assumption 3-(c). Second, by Assumption 4-(b),

1 < ’
T > FisGat
s=1

Part (c): Following the same arguments as above, the result follows by showing that 7! th LA al]? =

T

1
15 < B2 Y

= O0p((TN})™") = Op(dy7)-

0) ((5;/}) for any j € {1,2}. Adding and subtracting appropriately, we can write A4 = A; L Aﬁ)t,
1 A A
where A§ 4)t = % sT:1(st Hj fjs)&j.st and A§ 4Ww=T Zs 1 Hj fjs€j,st With &5et = ]t
2
that Iy = 7' 7 HAg.AtH and 11y = 771 5L A7)

For the first term, using the definition of &; s, we have that

are both O, (5;,1}) under our assumptions.

TR P el A, 2 T
Iy = T Z T Z(fjs — Hjfjs) ]Jif it T Z f]s — H; fjs Z HthHQ = Op(éﬁg“)’
t=1 s=1 J s—1

=0y (557)0p(N; 1) =0, (1) by Ass-2(a)
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since F || fjt||2 < A, and by Cauchy-Schwartz’s inequality,

1 T . e ; 1 T . 21 T e Aj 2 A
s s _
T > (fis = Hifjs) Il <7 > Hfjs —Hjfjs| 7 > ]Nj = Oy (On7) -
s=1 s=1 s=1
=0p(dyT) =0p(N;)

A i€is ||2
E/

'sAj
JN—jfjt, we have that

given that = Zstl IE=

Op(1) under Assumption 4-(d). For Il4, using the definition of & =

1 T 1 T & A 2
51
= TZ TZijjS%f]{t
t=1 s=1 J
1 Z
A;
< TX *ZHfas P
t=1
1 e A
2 J
< 15l fojs o Zufﬁu 0, (5:4) .
s=1 J
=0, ((N,;T)~1 =0,(1)
bZ;(As;-él(c) ) by A;)S—Q(a)

Part (d): Given parts (a), (b), and (c), all the cross terms that involve Aj1;, Ajo and Aj4 are
O, ((5NT) by an application of Cauchy-Schwartz’s inequality. Hence, we only need to show that
-1 thl J}mtAk,3t is O (5NT) for m = 1,2,4. Using the definition of Ay, 3;, we have that

/
-1 d / -1 d 1 L Y A?csk‘t
T Z Aj,mtAk,gt = T Z Aj,mt T Z fksnk,st 5 where Nk,st = fks Nk:
t=1 t=1 =

T !
- ZA( > fus )
t=1

T
_ E Ak F/Fk
= |7 IZAj’mt ]ka kT ’
t=1 ——
:Op(l)
Ek Ak,

implying that it suffices to show that 71 Zt 1 Ajmt N = O, ((5;,‘%[,) To show this, an application
et Mk

2
N, =0p (Nk_l) =0p (5;7%‘)'
Hence, using the fact that 71 Zle ||Aj,mt||2 =0, (5;,?}) for m # 3 implies by Cauchy-Schwartz’s

of Cauchy Schwartz’s inequality is not enough because 7 Zthl

inequality that the term in square bracket is O, (6&:}), which is larger than O, (5;}). We need a more
refined analysis, which in turn requires a strengthening of Assumptions 1-4 as given by Assumption
5. Starting with m = 1, by the definition of A;1;, we have that

T

1 €tk AW 5k:tAk 1 ¢ @) Epede _
TZALU = 72 7,1t TZAjl Nj :(a1)+(b1)a
t=1 t=1
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where

ANy iy el 1 A 1 e Mg
= g T;(fjs_ijjs) Vst N, TZ(fjs—ijjs) TZ'Yj,stiNk ;

and
T T T

A A
1 Z;ijs')’jstskt E_ ]Tijs ZV]stgkt i
=1

Note that we can rewrite (by) as

(b1) = =0p (5N4T) ’

A
\/fo]sZ’YJ,stil;uc

=0p(1) by Ass-5(b)

]T\/TN

if we assume that the term in the square bracket is O, (1). We impose this as a new assumption, cf.

Assumption 5-(b). In addition,

1/2 1/2
T 2
1 6/ Ak
[(a1)]| < ZHfJS H; st TZ'Yj,St %k: ’
t=1
=0,(3%) =05 (én7)

where
2

= Op (5;%) )

el Ak
Z’Yj st kt

=0p(1) by Ass-5(c)

T T
DO ORI S
s=1 t=1

- Nk T2

provided we assume that the term in square bracket is O, (1). We impose this as a new assumption,

cf. Assumption 5-(c). Consider next m = 2. Using using the decomposition of Ao = Ag 2)t + ASZQ)t,

we can write

T T T
1 e 1 W) e | 1 @) €l _
T E_  Ajau N, T > Al N, TT > Al N, © (a2) + (b2),

t=1 t=1 t=1
where
/
(QZ) = T_l Z (11—, Z <f]s H]fjs) C],st) EIX;:IC ! Z (f]s H fjs) ( Z Cj stEktAk> )
t=1 s=1 s=1
and
11 el A 1, 11 & el A
(b2) = Hjr > T > fjst,stkjiTk =H5 Z; fisp z; N, (€j,is€5.it — Eejisejit)) 'X,kk
t=1 s=1 s= t= i=1
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Note that

1 WW[1 &, 1 &
(b2) = VT NN | VT ;fjsT; <\/—;)\k i€hit(€jis€5,it — E(Ej,z'SEJ',it)))]
=0p(1) by Ass-5(d)
11 1 1 & 1 M A
TN 72]% TZ N}Nkz D Meinthiint (€580 — Bejinseiint) | = Op (6x7) -
J s=1 t=1 J i1=11d27#1;

=0p(1) by Ass-5(e)

By Cauchy-Schwartz’s inequality, we can bound (ag) by

1/2 T
2 1
) |72

1/2

=0p (‘W%F) Op (57&) )

T T 2
1 5 1 €Mk
<T 2 | = 11155 T2 Sy,

=0, (d57) =(a2—ii)

where we show that (a2 — ii) = O,(J55) by noting that

N 1|1 ’
(CL2 - ”) N2ZN2 T Z Z <\/7 Z Ak i€k, it 5] is€j,it — E(%’,is%‘,it)))
Jk = t:l
=0(dy7) =0,(1) by Ass-5(f)
1 11| 1 i N i
+ NN T Tz ﬁ Z Z Z )\k‘ ’Lzek iot 6] 7,186_] i1t — E(gj,ilsgj,ilt))
N k , s=1 t=1 \/721 1ig#iy
Crey =0, (1) by Ass-5(g)
Finally, consider m = 4. Using the decomposition of A;4; = A;Qt + Agizt, we can write
1 ¢ €tk AWM 5ktAk 1 ¢ 8IatAk
P et < LS S A A = o ),
t=1 t=1
where
T T T T
1 gl A 1 5 1 gl A
-1 ktiik I f. = o SRtk
@ = 'Y (T > (- Hut) & ) S () (T >, el ) , sad
t=1 s=1 s=1 t=1
T T
1 1 el Ak
by) = H;j= — .
( 4) i tzl T Szl fjsgj,st N,
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Note that
T T
1 1 Ez Ak
(bs) = ijZfojsfj,st&i
A j€js E;CtAk
—yTZm z( 1)
1 el A 1 & €r: Ak
o= Ss 1 2

=0, (ﬁ) =0, (ﬁ)by Ass-4(c)

1
=0, ——— | =0, (65%).
(e ) - oot

In addition,

T 1/2 2\ 1/2
@)l < (232 |[Fis = Hifye Z T Z ,
s=1 s=1 t=1
where
T T _ T
1 1 g5y el A 1 5A1 5Ak
2 lF N = 7 Zfﬁ 5
s=1 = S=
e !
< stV %ijtgkt/\k
t=1
T 2 T
1 1 1 1
- (X e 3 b
N, TN; Ts:1 || TNy, p
=0,(1) by Ass-4(d) =0p(1) by Ass-4(c)
1
= O =) =0,(0:5
p(TNij> p(NT)’
implying that |[(as)]| = Oy (357) Op (6&%) = Op (On7) -
Ne,
Part (e): By definition, A;3; = 7 ZS 1 fjsnj st, where 1 o = j’s JJ\Z_ﬁ. Using the definition of the
rotation matrix, H; = V_l FTF AN/]\ we can rewrite this term as
T T At T
A gt el A [ 1 A
TSt = (53 0) S (15
t=1 7 Nj N’f l:l
1

1 AIA AgjtektAk A%Ak ! I\ -1
e () () o

by Assumption 2-(b) and Assumption 4-(d). =
Proof of Lemma Using Bai (2003)’s identity to express fjt—ijjt = V{l (Ajie+Ajor +Ajz+ Ajar),
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we can write
;i (fjt - ijjt) (fkt - Hk:fkt)/

41 _
=V ! Z (Ajie+ Ajoe + Ajse + Ajar) (Apae + A + A + Apa) Vit
=

T T r
1 B 1 _ 41 _
t=1 t=1 =
T
_i_Vfll ZA. Al VT + cross terms
i T GAatAg 4tV :
t=1

Given Lemma the dominant term is the third term. All other terms are O, (5;,?}) under our
assumptions, given Lemma This implies that

T

1 ) ~ /

T Z (fjt - ijjt) (fkt - kakt)

=1
. -1 1 T / —1 —4
=V szj,?ﬁtAk,Sth +0yp (On7)
t=1
11K . 1 ; /

= Vj_lf Z (T > fjs%ysf) (T > fksnk,st> Vit + 05 (0x7)
it £ _ _
- Z( ijsf]s jjj ) (TZ l/cs ]k\fkt) Vk1+0p(5N%“)

FiF Nejt\ [ Aie F'F

_ Jj=J kEkt k 4

= V! 0 T;(Nj)(Nk> - Byl 40, (635)

B 1 o T <A3 Alz’:“]t 1<A;€5kt>
= = in )

NNk =\ N VN,

T

U

1
T
— \/WHJ< Z jtu;t> Hj, + 0, (657)

t=1

!
Hj, + O, (517’})

completing the proof . m

A.3 Proof of Theorem

Following AGGR(2019), we define R= VHIVQVQEIVM, where f/]k = %Zthl fjtfét. The test statistic
is given by f(kzc) = Zf;l o= tr <A1/2>’ where A = diag (/312 (= 1,...,kzc) is a k° x k¢ diagonal
matrix containing the k¢ largest eigenvalues of R obtained from the eigenvalue-eigenvector problem

RW = Wf\, where W is the k; x k€ eigenvector matrix. The main idea of the proof is to obtain an
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expansion of R through orde Op (5;%), where dy7 = min <\/N , \/T), from which we obtain an
asymptotic expansion of A and of tr (Al/ 2).
The asymptotic expansion of R is based on expanding f/jk around f/]k = %Zthl fief7, and using
/
the fact that under the null hypothesis fj; and fj: share a set of common factors ff (i.e. fj; = ( - ]St’ )
for j = 1,2). Adding and subtracting appropriately yields
T
~ 1 o ~ /
Vik = % > (fjt — Hjfj + ijjt) (fkt — Hy fre + kakt)
t=1
1 & 1</ . | .
= Hjz ) fifiHi+ 5 (fjt - ijjt) (fkt - kakt) + 5D (fjt = ijjt> FreeHj,
t=1 t=1 t=1
1 <& A '
+ij ; fit (fkt - kakt)

= Vie + Xj,

with V]k = ij/ijl/c? ‘%k = % Zle fjtf]:;ta and X]k = HijkH];, where letting 1/1]',5 = Hj_l (fjt — ijjt)7

X

1 & 1 & 1 <&
72 Vit + o D itfie + o D fitthe
t=1 t=1 t=1

We can show that Xj; = O, (0y>) under Assumptions 1-4 (see Lemma a) below). Using this
result, we can show that R = R + O, (5&%), where R = 1"/1;117121"/2511'/"21 = (H{)_1 RH{, where
R = ‘71]11712‘72511721. The following auxiliary lemma states this result and characterizes the term of
order O, (5&%) under Assumptions 1-4. Note that for this result we do not need Assumptions 5 and

6. Nor do we need to impose the null hypothesis of k¢ common factors between the two panels.
Lemma A.3 Let Assumptions 1-4 hold. Then, (a) X;i = O, (65%) and X = O (657); and (b)
R= ()™ |R+ V0| H] + 0, (05%) , where

\if = —XHR + Xlzé + B,Xgl — B,X22B, é = ‘7251‘721, and

T T T

. 1 1 1 _1(;

Xjk =7 > iy + T > it + T > fidhy,  where = Hi (fjt - ijjt) :
=1 =1 =1

Remark 1 Lemmal[A.5(a) is the analogue of Lemma B.1 of AGGR(2019). Contrary to AGGR(2019),
we rely on Bai (2003)’s asymptotic expansion for fjt—ijjt, which explains why our set of assumptions
is different from those of AGGR(2019). Lemmal[A.§(b) is the analogue of Lemma B.2 of AGGR(2019)
under our Assumptions 1-4. Note that the order of magnitude of the remainder term follows from
expressing R as a function of the inverse matrices of ij = ij(lk]. + ‘G;lXj]) and then using the

expansion (I — X)™' = I+X 40 (X?) to obtain (ij—i—\'/"j;l)'{'jj)*l = ij—f./jgl).("jj—i-Op ((5;,4T) given that

10This means that it contains terms of order O, (6;,2T) and a remainder of order O, (6;,‘;). Instead, AGGR(2019) need
to obtain higher order expansions with remainders of order O, (5&‘}) because they replace our assumption # -0

with 275 — 0.
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Xjr = Op (5&%) Instead AGGR(2019) use a second-order expansion (I — X) ' = [+ X+X2+0 (X?)
to obtain their equation (B.5). They require a higher order asymptotic expansion than ours because

their rate conditions on N and T are weaker than those we assume under Assumption 1.

The next step is to obtain an asymptotic expansion of the k¢ largest eigenvalues of R when the two
panels share k¢ common factors, i.e. when fj; = [ff, ]st’

of k¢ common factors is true). We summarize these results in the following lemma.

| for j = 1,2 (hence, when the null hypothesis

Lemma A.4 Suppose that Assumptions 1-4 hold and assume that fj: = [f{', fj{]' for j = 1,2. Letting

U, denote the first k¢ x k¢ block obtained from U defined in Lemma it follows that
ke 1 o
S =kt (52 ) + 0, (33h)
=1

Remark 2 Lemma gives the asymptotic expansion off(kc) = Zf; p1 through order O, (5&%)
under the null hypothesis that there are k¢ factors that are common between the two groups. This result
is a simplified version of equation (B.13) of AGGR since it only contains terms of order Oy (5&27,)

(their expansion contains terms of order O, (5]Q4T))

~ ~ /
Next, we can use Lemma |A.2| to expand %Zthl <fjt — ijjt) <fkt — kakt> up to a remainder

of order O, (5;,?}). We can then obtain the following result using the definition of W given above.

(
J
and defining Uy = uNuﬁ? - “g?7

Lemma A.5 Suppose Assumptions 1-4 strengthened by Assumption 5 hold. Then, letting u (t:) denote

.. AN A\ Neje
c Cc ., = j 3=J
the k¢ x 1 wvector containing the first k rows of u;; = ( N ) I

we have that under the null hypothesis of k¢ common factors,
. 1 &
\Ilcc = _ﬁ Zutu{ + OP (51:74;) :
t=1

The asymptotic distribution of the test statistic given Theorem follows from the previous
lemmas by adding Assumption 6 (in addition to Assumptions 1-5).

Proof of Lemma|A.3. Part (a): This follows from Lemma A.2 of Goncalves and Perron (2014)
and the fact that the rotation matrices are O (1). Assumptions 1-4 are sufficient to apply this result.

Part (b): We follow AGGR(2019) but only consider a first-order asymptotic expansion of R. In

particular, we write
R =Vi'ViaVig'Var = (I, + Viy ' Xun) 7V (Vig + Xio) (I, + Vig' Koo)' V55" (Var + Xan),

where we used ij = ij(lkj + V];lXJj) We then use the expansion (I — X) ' =T+ X +0 (X?) to
obtain ([, +‘./.};1ij)_1 = Iy, —Vj;lij +0, (5]}1}). Contrary to AGGR(2019), we only keep terms up
to order O, ((5]7;) Thus, the asymptotic expansion of Rin part (b) only considers terms that are linear

in Xjk. Terms involving products or squares of Xjk are of order O, (5;,1}) =0, (1/ min (NZ,TQ)),
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which is either O, (N/T3/2) if 67 = VN or Op (\/T/N) if 6y7 = VT. Since we assume that
VT /N — 0 and N/T3/? — 0, the remainder is O, (5;,1}) =0,(1). m

Proof of Lemma |A.4 We follow closely the derivations of AGGR(2019) leading to their
equation (B.13) in Section B.1.4. Specifically, consider the eigenvector-eigenvalue problem associated
with R, RW = Wf\, where we let W denote the ki x k¢ matrix containing the k¢ eigenvectors
of R associated to its largest k¢ eigenvalues p?,.. ., p%c, which we collect into the diagonal matrix
A= diag (ﬁlQ l=1,..., kc). We can replace R from its asymptotic expansion in Lemma (b):

(B (R+ V') B+ 0, (533) | W = WA.
Pre-multiplying this equation by Hj gives
R+ V') HIW = HIWA + 0, (351)
( 11 1 1 P ( NT)
=W =W

Since ¥ = O, (5&%,,), R converges to R, implying that they share the same eigenvectors and eigenvalues
asymptotically. The next step is to use the fact that under the null when f;; = [f, f5/]' for j = 1,2,

It
R can be expressed as a block triangular matrix of the form

P [Ikc Res

0 Rss

i

where Ros = Y150 (Ip, ke — Rys), with Xpe = T71 Zthl fefe, B = T71 Zthl fEfs and Ry, is
as defined in Lemma B.3 of AGGR(2019). This result is an algebraic result that only relies on the
assumption that f;; = [f{’, f3;]' for j = 1,2. Hence, it holds under our Assumptions 1-4. The fact that
R has this special form is key for deriving the asymptotic distribution of the test statistic under the
null hypothesis. In particular, because R is block triangular, its eigenvalues are equal to the eigenvalues
of Ie and Rss, and we can show that the largest k¢ eigenvalues are all equal to 1. Similarly, the first
k¢ eigenvectors of R can be shown to be of the form (z,0')’, where z¢ is a k¢ x 1 vector of constants

and 0 is a (k1 — k©) x 1 vector of zeros. Hence, letting

Iie 0
E, = k and FEs = ;
k1 x ke 0 ey x (k1 —k©) Iy — kg

we can follow AGGR(2019) and decompose the eigenvector and eigenvalue matrices of R as
Wy =EU+Ea and A= I+ M,

where U is a k¢ x k¢ nonsingular matrix, and M and & are also stochastic matrices. Because F, and
E, span R*1, the decomposition of W is true by definition. The same applies to the decompositon of
A. However, under the null hypothesis, and because W; and A are also the eigenvector and eigenvalue

matrices of R, & and M converge to zero at rate O, ((5&%) In particular, replacing Wi and A into the
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eigenvector-eigenvalue equation for R and letting P = Vl_ll\il gives:
(f+8) (O + Ea) = (BU + @) (Ine + M) + Oy (35%) , and
RE.U + ®E.U + RE,6 + ®Ey6 = EU + E.UM + Eyé + E;6M + O, (Oy7) -
Using the fact that REC = FE. under the null hypothesis and the fact that éESd and ESdM are of
order O, (5]7%,,) implies that
OFE.U + REsG = EUM + Esé+ O, (057 - (9)

Pre-multiplying equation (9) by E. gives

E.REGq + E\®E.U = ELE.UM + E.Esé + O, (657) ,

—_—— = ——

M Y
=Rcs =b.. =Iye =0

from which we obtain
M=U" (Rcsd - éCCU> +0, (0y3) -
_l’_

Pre-multiplying equation @) by E’ gives Rysd + ..U =d O, ((5;,4T), from which we obtain

A ~ -1, . —4
a = (Ikl—kC - Rss) (I)ch + Op (5NT) . (10)

Plugging & into the expansion for M gives

RS B ~ B -1 . ~ 4
M=U q)cc + Rcs (Ikl—kc Rss) <I>sc U+ Op (5NT) . (11)

The expansions and correspond to equations (C.61) and (C.62) in AGGR(2019)’s On-

line Appendix (proof of their Lemma B.4). Given the definition of Res, we can write f]c_clflql =

~ —1 “ - -1 . ~ ~ ~
Res (Ikl,kc - Rss> , from which it follows that ® et Res ([kl,kc _ Rss) b, =51 [ECC<I>CC 4 S bel.

. ! .
Letting fi1; = (f¢, fi})', we can write

T ~ ~
- by X
=13 g = (2 %),
p—t Yic Xn

. . .. @ - e . .
Partioning ® accordingly, i.e. letting ® = L |, implies that e ®ee + Ye1Pse = (VHCI)) ,
Dy Dy, (cc)
where we use the notation (A)( cc) to denote the upper-left k“ x k¢ block of any matrix A. Since
® = V7', we obtain that (ffn(i))( - <\T/)( : = U, the upper-left k¢ x k¢ block of ¥ as defined
cc cc

in Lemma [A.3[(b). Hence,

This implies that
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from which it follows that
R 1A vn 1a a
A2 = I 4 GUTISN 00U + Oy (d37) -

by using the expansion (I + X)V/2 =T+ 3X + 0, (X?) with X = M. Taking the trace of A2 yields
the asymptotic expansion of & (k°) = Ef;l p. |
Proof of Lemma This result follows by replacing U with the expression from Lemma (b)

In particular, recall that U is defined as
U= —XHR + X123 + B/Xm — B/X22B7

where B = 17251‘721, and X jk is as defined in Lemma (b) Under the null hypothesis, both R and
B have the same structure [E. : %], which implies that the upper-left k¢ x k¢ block T is equal to

\I/cc = _Xll,cc + X12,cc + X21,cc - X22,cc;

as argued by AGGR(2019) (see their equation (C.69) in the Online Appendix). As explained by
AGGR(2019), we can rewrite the expression of W, as

T
T 1 c C [ c !
Ve = T ; <¢§t) - gt)> ( gt) - @bét))
L= @@ L@@ L 00 LR 40,0
c c)! c c)! c c)! C c)!
= _{TZ%MZ’U _TZ%MZ’% "’fz%t%t _fz%t 2t }a
t=1 t=1 t=1 t=1
where %(-?%(g?l denotes the upper-left k°x k¢ block of the matrix 11}, where 1j; = Hj_1 (fjt — H; fjt) )

For any j,k € {1,2}, we can write

T T
1 .1 A A / _1
=itk = H 2" (fie = Hyfin) (fue = Hidie) (H)
t=1 t=1
N ~ /
The result follows by replacing % Zthl ( fit — Hj fjt> ( fre — Hy, fkt) with the asymptotic expansion

given in Lemma [
Proof of Theorem [2.1] The proof of this result follows from Lemmas [A.3] [A.4] and [A.5| under

Assumptions 1-6, when the null hypothesis is true. =

B Bootstrap results

We organize this appendix as follows. In Appendix B.1, we provide a set of bootstrap high level
conditions which are the bootstrap analogues of Assumptions 3, 4, and 5. These conditions are used
to prove two auxiliary lemmas in Appendix B.2. Appendix B.3 provides the proofs of the results in

Section 3.
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B.1 Bootstrap high level conditions

Here, we propose a set of high level conditions on €7 ;, under which we can characterize the asymptotic
distribution of the bootstrap test statistic £* (k¢). These conditions can be verified for any resampling

scheme.
Condition A¥*

(i) E* (e* } ) — 0, for all i, .

7,8t

2
oo T T * _ N;
(i) 7= Yo = 0p (1), where v}, = E* (5 X521 €40 at)-

=1 7,28~ 7,it
2

e T T * N, * * * * *

(iii) % dDoim12sm B ﬁ > i <€j,it€j,is - K (Ej,itgj,is)) =0, (1).
Condition B*

. T T 7 7
(i) % Dote1 2= fis g/‘t’Y;,st = Op (1).

2

s T * T N; 7 * * * (% *

(ii) % S B \/Z,ITVJ Dosm1 2ita ij(Ej,isgj,it - B (Ej,isgj,it)) =0p (1)
2
(iii) E* \/TT Zt 1 f]te*IA =0p(1).
2
(iv) th B = Jf =0,(1).
Condition C*
~ 2

. T T X

(l) % Zt:l HZSII fjsfyj,st = OP (1) :

. T 7 T . eYA
(11) % Zszl fjs Zt:l Vj,stil;% = OP* (1)

T "
(iii) % Yo E

T * a*IA
D=1 "jst \k/t]\T: =0p(1).

. T F T N 3 X .
(iv) % dos—1 fjs% D1 (Tlﬁ > )‘k,igz,z‘t(gj,isg;,it - E*(Ejzs*?;zt») = Op+(1), where N = min(Ny, Na).
(v) f Z =1 fjs JT Zt 1 <\/W 211 =1 212;&@1 )‘k,izgz,igt(‘g;,ilsg;,ilt - E*(gj,ilsg;,ilt))> = Op+(1).

2
(Vl) Tz H Zt 1 (\/> Zz 1)‘k@€kzt( ]’LSEJ it E*(gj,isg;,it))>“ = OP*(1)7WhereN:min(vaNQ)'

2

(vii) TZS 1 = Op-(1).

Remark 3 Conditions A* and B* are used in GP(2014) and|Gongalves and Perron (2020) and have

fzt 1 <\/W Zzl 12127&1 k12€]§yi2t(5;,i1s€;,i1t_E*(E;,ilsg;,ilt))>

been verified for the wild bootstrap and the cross-sectional dependent bootstrap, respectively, when fjt
and 5\]1 are the PCA estimators. Here, they are obtained as in AGGR(2019) under the null. Condition

C* is new to the group factor model and needs to verified.
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B.2 Asymptotic expansion of the sample covariance of the bootstrap factors esti-

mation error

For each group j, we have that

f —Hife =V (A + A + Al + AL ) (12)
where
1 1O
= ot with )y = BT =D el |
s=1 J =1
1 1 O
;,215 = T Z fjiksgj,sh with Cj,st = ﬁ Z(E;,isezit — B (g;,isg;,it));
s=1 J =1
T A/ %
1 A . , Neeh
;73t = T Z f;sn;7st7 with 77;’:575 Z A f]sgj it — ]JVJ ; and
j
A/ *
S
ja = = nysfy st With & o = fy % Mjts:
j
First, note that 4 Zs 1 H HJ"‘f]SH2 = Op (657) under Conditions A* and B* below, which

are all from GP(2014).
The following auxiliary lemmas are the bootstrap analogues of Lemmas and

Lemma B.1 Suppose Conditions A*, B* and C* hold. Then, for any j, k € {1,2}: (a) 7 EX ZtT VAT LAY L =

Op= (6]:/4T) s (b) 7 ZtT:1 A5 01 Aflor = Opr (5&4T> (c) 7 Zt 1 A5 0 AY 4 = Opr (O ) (d) 1 Zt VA Al =
Op= (5]7;) for m # n, where m,n € {1,2,3,4}; and (e)

T Al A !

*Ir* * * - * AA] A it

——=V;H; g ujyuy VHEYVE = Op (N 1), where  uj = < J ) i
=

A .
Z 7,3t k3t \/m Nj \/]TJ

Lemma B.2 Suppose Conditions A*, B* and C* hold. Then, for j, k € {1,2},
0 (5 1) (= ) = et (3 ) 0 5.
— Y — HYf;  — Hf = ———H'| =) ulu o+
jt j ]t) ( kt k kt) ' j jt kt
I NN T
where w3, is as defined in Lemma .

Proof of Lemma This proof follows closely the proof of Lemma Part (a): We can
bound the norm of % Z?:l T1AR 1 by

1/2 LT 1/2
EY il < (X 150) (3 l)
t=1

thus we show that &~ Zt 1 HAJ ”H =0, (5]}4T) for any j. To show this, we write A7, = A;(llt) +A;(12t),
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where
m_1g 1)
Ajie = TZ (f - Hj fas) Vst and A= ngs'y],st,
s=1

2
and we show that I = %Zthl HA;(llt)H and I} =
under our bootstrap high level conditions. First, note that

+ ZtT 1 HA;%)H are both of order O« ((5;})

5NTT ) OP* (5;/%“)7

H‘[1H < Hf]s H*f]5H2 2 h/j st‘2
T

t=1 s=1

=0px (ls]T]T)
since T~ 1 23:1 I ;*S H:fil? = O, (5X,QT) under Condition A*, and T2 Zthl Zstl |’Y;,st|2 =
Op (T™") under Condition A*-(i). Similarly, ignoring H 5= Op (1), Condition C*-(i) (which is new)

implies that II7 = Op (T2) = Op (5;,‘;) since

1 T T
f Z Z Jsvg,st
t=1 s=1

11 T T ~
ﬁfz > Fishst
t=1 [|s=1

=0, (1) by Cond-C*(i)

*(2
1Zt 1HA ( )||2 WhereAth = 125 1(

7,2t
7 ZSE] it - £ (6j,issj,it))‘ FII‘St,

Part (b): Welet I = 771 S0, |ASY) % and 113 =
H]*fJS) j st and AJ(2t) = j 125:1 fJSCj,st’ with C]*st = N Zz 1(

note that
1 Z ) | LT
< (5305 - 1) (XYt
s=1

) = Op (On7N; ) = Op(On7);
t=1 s=1

since i POHARD D 1G> =0 (N1 as implied by Condition A*-(iii). Second, by Condition B*
(i),

O,((TN;)™") = Op(dy7).

T 2
* * 1 Fook
I1; < ||Hj||2f fojSCj,st
t= s=1
*(2 Pl .
¢ = H* i Z 1fJS§;st7 with g;st =

Part (c): We let A7) = LT (fr, — B f]s) o and ATY) =
Y H and II; = 7' 52T, HA*(2 H are both O (k)

- A
; 5\?“. We show that I} = T~} Zt:l st
. ; str We have that

Jt J
under our assumptions. For the first term, using the definition of ;
2 T

Z (f5 = Hjfse)

:Op* (6;73—')01)* (Nj_l

js]

Z 1f5¢ll* = Op(by1).

T

SA
ijs H fia) =T
s—1 ]

1 X
_TZ
t=1

) X
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since by Cauchy-Schwartz’s inequality,

T w12 */ A
1 fx * 6jSAj 1 * * 21 €jSAj —4
T Z(fjs — Hj fis) N < T s — Hifs|| = N = Opr (5NT) )
s=1 J 5= s= J
=0px (6;72“) =0px (Njil)
Ay

given that X ZS 1

vorl Op+ (1) under Condition B*-(iv). For II}, using the definition of £ ; =

WAL~
X fv (and ignoring H = Oy (1)), we have that

LTl I evA, 2
_eMA
I = TE TE fjs%f]{t
t=1 s=1 J
T T */ X 2
< 23 |r i
T &= | T &= N; o
t=1 s=1
2.7
1 ~ 1 -2
< 5P 75 EEjfjse*'Aj =3 |7 =
TN thl

=0p (1) by Cond-B*(iii) =k;
Part (d): Given parts (a), (b), and (c), all the cross terms that involve A%, A%, and A7, are

Op+ ((5NT) by an application of Cauchy-Schwartz’s inequality. Hence, we only need to show that
-1 thl v AL 3¢ 18 Op~ (5NT) for m = 1,2, 4. Using the definition of Ak73t, we have that

T
1 e x N et
1ZA]mt k:3t = 1ZA]mt (Tz.fksnk,st> where nkst—fks kakt
A /
9
IZA]mt< kasfks 2 kt)

e} k F/F*
TS 5 ] B
=0, (1)
Thus, it suffices to show that T-1 37, As E%ﬁ’“ = Op (6yy)- Starting with m = 1, by the definition
of A%y,, we have that
T ~ T T
1 e 1 yer Ay 1 yerr Ay . .
TZAJ'U ]i[k ZA],lt : +TZAJ115 ]ifk = (a7) + (b1)-
t=1 t=1 t=1

=0p (1) by Cond-C*(ii)
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In addition,

1/2 1/2
T T .
* 1 Fx * g 2 1 1 x er Ak
Il < | = > |75~ Hy s S S |
s=1 s—1 —1
=0y~ (0n7) =0+ (635
where
T T ~ 2 7

1 1 % E;;;Ak . 5ktAk 6

72| 2 it = -5 Z Z Viet = 0y (675

=T Nk NkT —~ | < VN,

=0px (1) by Cond-C*(iii)
provided the term in square bracket is O, (1), which follows under Condition C*-(iii). Consider next

= 2. Using the decomposition of A7, = A ) 4 A;(gt), we can write

7,2t
1ZT:A5 EktAk 72 EktAk’ + = 1 ZT:A EktA’“C (a*)—i—( *)
T o 7,2t Nk; ]Qt N T 7,2t Nk 2 2
Note that
T
. 1 VN |1 -1 1 - .
(b3) = —TNij 7T SZ:; i ; <\/N ; /\k,igz,z’t(f;,isg;,it - E*(E;,isgj,it))>]
=0px (1) by Cond-C*(iv)
11 1 1 & Y
~ %/ % —4
+ T NiN; TijsﬁZ /N:N.. Z Z )‘klzgkwt GirsEhint = B (1 5850,t)) = Opr (5NT)'
s=1 t=1 7,1 1ia#iq

=0, (1) by Cond-C*(v)

By Cauchy-Schwartz’s inequality, we can bound (a}) by

1/2
1 & N1 L1 & 'A
£k * [ * Ek k -1 -3
(T Z ‘ fjs - Hj fis > T T Z Cj,st ]i, = Opr (5NT) Op~ (5NT) ’
s—1 s—1 =1 k
=0+ (5x571) =(a}—ii)
since
[T T N 2
N 1 1 1 ~
(a3 — i) = —5+5 | = Z = Z ( Z ki€t (€558t — E*(e;zsgjzt))>
NkNj T s=1 r t=1 \/N i=1
H,—/ L
=0(55%) =0, (1) by Cond-C*(vi)
1|1 &1 Ni :
k(K * —6
Ol ) Y (T ) o I I C I e ) | R ronte
J L s=1 t=1 11 1ig#i1
=0(0x7) =0, (1) by Cond-C*(vii)
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Finally, consider m = 4. Using using the decomposition of A}, = = a4 A;(2) we can write

7,4t At
T T T =
1 % £y 1 (1 ey Ak 1 *(2 5*/Ak % %
T ZAjAt ktk ZAJ 4t) kt T ZAj,(élt) ’ka = (a1) + (b1)-
Note that
1< e A
* * k
(b3) = Hjm Z ngsé“],st 5
t 1 s=1
T */ T Y
1 . 5]5A 1 = ey 1 —4
_ — . =0 | —— | =0, (8 .
Tzfﬂs A thlfﬁ Ny P\ 7 N, N, P (NT)
=0, (7%/]) =0+ (7%%) by Cond-B*(iii)
In addition,
1/2 i o\ 1/2
. 1 . 2 1 1 « Emk
@Dl < ( f— H e ) DM [OILFE - ,
where
T T X T
lz l E;;Aj thktAk _ lz 8;;/\]'1 ~t5k,tAk
T T N; Ny T N; T TN
s=1 t= s=1 t
T */ X\ 2
1 eX A 1 < e Ay
< = Jjs=J = kt
= TZ N; TZ Jt N,
s=1 t=1
112 T 2
1 1 1 Ej;A] 1 ~ ’ T
= v 7222 || 2 e
NkTNJ T; Nj TNk; Jtekt
=0, (1) by Cond-B*(iv) =0, (1) by Cond-B*(iii)
1 —6
= Op* <TN]Nk> = Op* (6NT)7
implying that ||(a3)]| = Op+ (57 -
~ A/ *
Part (e): By definition, A7 5, = % EST 1 J7sm} st» Where 17 o = j/ . JJ' Using the definition of the
! B AL A
bootstrap rotation matrix, H ]* = V;‘leJTFJ jvjj we can rewrite this term as
T A/ % X T
1 1 T R L VI
-1 * o J-gt kt
A S o A
Y st = e () 3 R (1 )

given in particular Condition B*-(iv). m



Proof of Lemma This follows immediately from Lemma [B.I] m

B.3 Proof of bootstrap results in Section 3

The section is organized as follows. First, we state several auxiliary lemmas used to prove Lemma
and Theorem followed by their proofs. Then, we prove Lemma Theorem and Proposi-
tion B.1

Following AGGR(2019), we define R* = VW Vi IV, where VJ* =z S f;‘t f/. The test
statistic is given by &* (k) = Zl 1P =1tr (A*I/Q) where A* = diag (A*2 I=1,. k:c) is a k¢ x k¢
diagonal matrix containing the k¢ largest eigenvalues of R* obtained from the eigenvalue-eigenvector
problem R*W* = W*A*, where W* is a ki x k° matrix of eigenvectors associated to k¢ largest
eigenvalues. The main idea of the proof is to obtain an expansion of R* through order O, (6 NQT)
where d y7 = min (f N, T ) from which we obtain an asymptotic expansion of A* and of tr (A*l/ 2).

The asymptotic expansion of R* is based on expanding v ), around Y ﬁ: = %Zthl fjt f]i:t’ where
fjt = ( i ]s{) for j = 1,2. Note that fjt imposes the null hypothesis that there are k¢ common
factors among the two panels and it is different from the vector fjt, which contains the k; largest
principal components of Y;. Hence, the need to use different notation. The properties of the bootstrap
test rely heavily from imposing the null hypothesis in the bootstrap DGP. Adding and subtracting
appropriately yields

=Vi+ X5 with V= WHY and  Xp = HI X5 HY

*
JJk

where letting ¢, = H~ ! ( H*f]t>

Jt —
T R 1 T
]k =7 Z@Z’jﬂ/} T Z w;‘(tfllct + T Z f]“/)lt:t
t=1 t=1

Under Conditions A* and B*, we can show that X Tk = Opr (657) (this follows from Lemma B.3 of GP
(2014)). Using this result, we can show that R* = R* + O, (6 NT) where R* = VWi Vo 1V =
(H¥)"' R*HY, where R* = V7'V V55 Vs, Note that R* is the bootstrap analogue of R =
Vi1 'Vi2Vy5' Vo defined in Lemma B.2 of AGGR(2019).

The following auxiliary lemma provides the asymptotic expansion of R* through order O+ (6 N2T)
Lemma B.3 Suppose Conditions A* and B* hold. Under Assumption 1,

R = (H{") 7[R+ HY + Oy (33%)

"'Note that f/] is the bootstrap analogue of Vi, = T~ Zt 1 fitfre defined in eq. (B.3) of AGGR(2019). Although
we keep the star notation when defining v &> we note that v % is not random when we condition on the original sample.
We adopt this notation to be consistent Wlth notation in AGGR(2019)
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where U* = — X}, R* + X{,B* + B¥ X}, — B"X3,B*, B*=Vy,, and
T ) 1T
]k‘ = Z¢th Zw;}f}/@t + T ijt?ﬂ?éi, where w it = H* ! (f — Hj f]t>
= t=1

Remark 4 Lemma is the bootstrap analogue of Lemma B.2 of AGGR(2019) when the rate condi-
tions on N and T are as assumed in Assumption 1. Note that under this assumption, we only require

an asymptotic expansion through order Oy« ((5NT) which means its remainder is of order O ((5;;)

Remark 5 Lemma only requires Conditions A* and B*. Condition C* is not used here. Note
that Vi, = Iy, and Vi = Iy,, which explains the differences between the asymptotic expansions of R

and R* (in particular, we do not need to pre-multiply T* by Vl*l_l).

Since the bootstrap test statistic is defined as é* (k) =tr (A*I/Q) where A* = diag ( 2ol =1,...,k° )
contains the first k¢ eigenvalues of R*, our next result provides an asymptotic of A*1/2 from which we

obtain an asymptotic expansion of &* (k°) = Ef;l or
Lemma B.4 Suppose Conditions A* and B* hold. Under Assumption 1,

(a) A*V2 = 1o + %U*_l‘i!’c‘cﬁ* + Op= ((5&%) , where W*, is upper-left k¢ x k¢ block of the matriz U*
defined in Lemma and U* is a k¢ x k® matriz.

(b) tr (AV2) = S8, p = ke + St (92 + Ope (37%)

Lemma is the bootstrap analogue of Lemma B.4 of AGGR(2019) when N and T satisfy the
rate conditions of Assumption 1. In contrast to Lemma B.4 in AGGR(2019), which only holds under
the null hypothesis, Lemma holds under both the null and the alternative hypothesis.
Next, we provide an asymptotic expansion of \I/ . through order O (5 NT) (i.e. with remainder of
order Op+ (5;,‘;)) This expansion is based on the asymptotic expansion of & Zt 1 ( —H! fjt) ( f;t — H, fkt)l
given in Lemma [B.2] This result is in Appendix B.2 and it requires the strengthening of Conditions
A* and B* with Condition C*. We can then obtain the following result using the definition of W%,
given in Lemma [B.3]

Recall that U = Nuhgc) u;(tc), where ujgc) denotes the k¢ x 1 vector containing the first k¢ rows

AA;\ Ae
of uj, = < ]J\/'j]> \}Ni;
Lemma B.5 Suppose Conditions A*, B* and C* hold and assume that Assumption 1 is verified with
N = Ny < Ny. Defining U = MNUTEC) - u;EC), we have that ¥*, = — Zt LUUT 4 O ((5 T) -

Proof of Lemma We follow the proof of Lemma B.2 of AGGR(2019), but only consider a

first order asymptotic expansion of R*. In particular, we write
. f 1 Vo ol e G L e 1 e el e ..
R =V VibVoy Vol = (e, + Vi XT1) 7 VIT (Via + XTo) Tk, + Vo  X50) ™ Vay (Vo1 + X31),
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where we used f/j’; = V* (Ig; + V*_lX* ;). We then use the expansion (I — X)'=I+X+40 (X?) to
obtain (I, + TG’;_IX;J-)* = Iy, — V* lX* + Op+ ((5NT) where only terms that are linear in X* i are
larger than O« (5&4T) Terms involving products or squares of X k are of order O, (5 NT) because
we can show that X* Jx 1s of order Op- (5NT) using Lemma B.3 of GP(2014). m

Proof of Lemma Part (a): We follow closely the proof of Lemma B.4 of AGGR(2019),
but rely on Assumption 1 and the following key features of the bootstrap DGP to simplify their proof.
First, note that the eigenvector-eigenvalue problem associated with R* is R*W* = W*f\*, where

A* = diag ([’)72 l=1,..., k:c). We can replace R* from its asymptotic expansion in Lemma
[(E) 7 (B + 07) B 4 Ope (535) | e =i A,
where we note that ‘71*1 L—7p k, by construction. Pre-multiplying this equation by H;’ gives

(B + &) HYW = HYWA" +0, (334)
7W1 7W1

~ Tie
N N
0 R

where R*, = Y5,%5,, with X%, = T‘lth Lf5f3l = 33, This follows by the definition of R* =
/
Vi 0 Ve 'V, and the fact that 71T fufl,, where fj = ( o s/) for j = 1,2, with

Note that

gt
fe=W'fy and S as defined in Deﬁmtlon 2 of AGGR(2019). As argued by AGGR(2019) (specifically

their p. 1271),

T T T
Zf f¢ =T, T fifii=0, and T fif5 = I
t=1 t=1 t=1

which implies that for j = 1,2,

Compared to the matrix R defined in Lemma B.3 of AGGR(2019) here R’

cs?

the upper-right block
of R*, is 0 due to the orthogonality between ft and f3, for both j = 1,2. This in turn simplifies
the form of R¥, as compared to R,s in AGGR(2019). Importantly, the fact that R* is block diagonal
implies that its first k¢ eigenvalues are all equal to 1 (since they correspond to the eigenvalues of Ij.),

whereas its remaining k7 eigenvalues are those of R*_, which can be shown to be all smaller than one.

CER
This can be seen when f§, and f3, are both scalars, since then R, = ®2, where & = T~ 23:1 f3 fft
is the correlation between the two group specific factors. Moreover, the eigenvectors associated with
the first k¢ eigenvalues of R* are spanned by the columns of the matrix E, = [Ije,0'). Thus, letting

E, = (O’ ,Ikl—kf), and following AGGR/(2019), we can decompose the eigenvector and eigenvalue
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matrices of R* as
Wi = EU* + E,a*  and A" = Ije + M*.
Following AGGR(2019), by Lemma &* and M* converge to zero at rate Op+ (5N2T) Thus,
replacing Wl* and A* into the eigenvector-eigenvalue equation for R* gives:
(R* n m) (ECU* n Esd*> = (ECU* n Esd*> (Ikc n M) +0,- (054, and
R'EU* + V' EU* + R*E;6* + V' Eyq* = EU* + EU*M* + Es&* + Es6"M* + O, (0y7,) -
Using the fact that R*E,. = E, and that U*E,a&* and E,a* M* are of order Op+ ((5NT) implies that
U EU* + R*EsQ* = EU*M* + Ea* + Op (053 - (13)
Pre-multiplying this equation by E. gives
ELR*E&* + BV EU* = ELEU*M* + ELEQ* + Op (055 ,
—— —— ~—— ~——
ERZS:O E\ilzc Elkc =0
from which we obtain
= U0 + Op (057 - (14)

Expansion is the bootstrap analogue of equation (C.62) in AGGR(2019)’s Online Appendix (proof
of their Lemma B.4), where we have used the facts that R%, = 0 and 3%, = T~ 7| fefe' = Iie to

cc —

simplify the expansion in the bootstrap world. Equation implies that
N = Le + M* = Lje + U120 + Ope (33)
from which it follows that
A2 = By 4 UL + Oy (538,

by using the expansion (I + X)"/2 = I+ 1X 4+ O, (X?) with X = M*. Part (b): This follows by
taking the trace of A*1/2 and using the properties of the trace operator. m
Proof of Lemma We replace W#, with the expression from Lemma and use Lemma

In particular, recall that U* is defined as
U* = — X} R* + X},B* + B"X3, — B'X},B",
where B* = Vyy 'V = V3 since Vy = I,, and X]*k is as defined in Lemma Since the bootstrap

DGP for each panel generates bootstrap observations on Y;* using fjt = ( fer. A]St’

- Iic - c
R* = F NO and B* = I NO ,
0 R, 0 X35

where RY, = 34,55, where 3%, = T-' 52| f5,fs! = 5. Thus, the upper-left k¢ x k¢ block ¥*, is

/
) , we can show that
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equal to
Tk - 5k - 5k Ok Ok
\Ilcc - _Xll,cc + X12,cc + X21,cc - X22,ccv

as argued by AGGR(2019) (see their equation (C.69) in the Online Appendix). Given the expressions

of X]*k in Lemma |B.3| and the fact that fjt = ( f’, 5’) , we can then use the same arguments of

t
AGGR(2019) to rewrite the expression of ¥*, as :
3 Lxm () (@ (@) (@)
Ve = —T;@’lt — Py )(wlt — Py )
1 « x(c), #(e) x(c)  #(c)r d *(c)
= —{T;wu iy Zwu Uit —wa G Z Uit }

where ¢]t6)¢*(c denotes the upper-left k£¢x k¢ block of the matrix v twkt, where j*t = H’k 1 ( A;.‘t — Hj*fjt) .

For any j,k € {1,2}, we can write

Zw =1 i(fﬁ 13 5,) (Foo— Hihe) ()"

The desired result follows by Lemma noting that uy = \/Na/N1, where N = min (N7, N2) = No

(without loss of generality), which implies the definition of U} = un ulgc) - u2§6). ]

Proof of Lemma This follows from Lemmas [B.3] [B.4 and [B.5 under Conditions A*-C*. m
Proof of Theorem The asymptotic Gaussianity of the bootstrap test statistic follows from

Lemma (3.1 when we add Conditions D* and E*. To see that this implies that the bootstrap p-value

converges in distribution to a uniform distribution under the null hypothesis, note that
= P (NVT (€ (k) - k) < NVT (€(k) - k)
o (e (6 LB o (e gy B
=P <Qu N\F( 2N>_Qu Nﬁ(g( °) — k+2N>>
— o (9 NVT (€00 -1+ ) ) +a (1),

Since Q;l/ *NVT <f (k¢) — k°+ ) — N (0, 1) under the null hypothesis, the random variable inside
® (-) in can be written as 1 (U[O,l]), implying that p* 4@ ((ID* (U[O,l])) =Upy- ®
Proof of Proposition We can rewrite p* as follows

:p*(m/f(é*( ) — kc+%)<mﬁ(( ke) — ke

+28]:7)+ﬁ(8*—8))
W p ( 2\FZZM<NW(( )—k0+£v)+\/f(8*—8)>+op(1)

@) px ( \fZZNt —NVTe¢y + N 6\/TC2>+0P()

where ¢; and ¢y are positive constants and € is also positive. Note that (1) follows by Lemma
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under Conditions A*- C*, whereas (2) follows by using the fact that under Hy, &(k¢) — k¢ + B =
Zf;l pr — k¢ +o0p(1) (since B = O,(1) and p; —p p;), where p; denotes the true canonical correlations.
Since E;il p1— k¢ < 0 when there are less than k¢ common factors, Nv/T(€(k¢) — k¢ + %) < —NVT¢
for ¢; > 0 under Hy, as argued by AGGR(2019). Finally, we can bound vT'(B* — B) by VT N'~¢c,
for some positive constant co by using Condition F* and the fact that B* and B are positive. Thus,
VT (B* — B) is asymptotically negligible with respect to —N+/Tc;. This together with the fact that

ﬁ S 2} 18 Op(1) as assumed in Condition F* implies that p* —, 0. =

C Proof of wild bootstrap results in Section 4.1

In this appendix, we first provide three auxiliary lemmas, followed by their proofs. Then, we prove
Theorem [4.1]

Lemma C.1 Suppose Assumptions 1-4 hold. If either (1) {f¢}, {f5;} and {e;u} are mutually inde-
pendent and for some p > 2, Ele; | < M < oo and E||fj||** < M < oo, or (2) for some p > 2,
Elejul® < M < 0o and E||f;||* < M < oo, it follows that

: fe c Nj 15e c
(1) % 23;1 /£ = fEIP = Op(1), and N% 22:11 ||)‘j,z‘ - /\j,in = Op(1);
ss £s 5 s Nj 13s s\—1"ys
(i) 7 15 — Hi f5]P = Op(1) and N i 1AS = () 7V 1P = 0p(1);

N T ~
(iii) ﬁ Dot D= EGitlP = Op(1),

Fs'ps AS'AS
where H} = (Vj)*l%JTjj and V; is the ki x k3 diagonal matriz containing the kj largest

—_—
—

eigenvalues of Ejag/NjT on the main diagonal in descending order.

Lemma C.2 Assume that Assumptions 1-6 strengthened by Assumption WBI1 and WB2 hold. Then
Lemma [3-1] follows for Algorithm 1.

Remark 6 In Lemma we verify that the bootstrap method generated by Algorithm [1] satisfies
Conditions A* through C*. To verify these conditions, we use Lemma which is valid under Hy
and Hy. Therefore, Lemma[C.3 is satisfied regardless of the fact that either Hy or Hy is true.

In the following Lemma[C.3] we obtain the uniform expansions of the group common factors, factor
loadings, group specific factors, and group specific factor loadings up to order op(T_l/ 2) under Hg to
verify Condition D*. Note that Lemma is only valid under Hyg.

Lemma C.3 Assume that Assumptions 1-5 hold and Hg is true. Then, for j = 1,2, we have the
following:

(i) Jf = HE(ff + ) + op(T712);

49



(ii) 5\3,1 ( ) 1/)\6 +H01 Zt lft5j2t+HC Zt lft $,>\S +0p(T_1/2);

(iif) fat - Hs( ; \/> Jt +OP(T71/2);
(iv) 5‘}91 = (ﬁ;)_h)\ii + Hj% S ﬁt5j7it +0,(T~1/?),

where ﬁt — % X ff and HS = V)~ %AST?S and V; is defined in Lemma |C. 1|

Proof of Lemma Part (i): Recall that ff = W’fy;, where W is s ki x k¢ matrix
collecting the eigenvectors of R associated to the k¢ largest eigenvalues and WW = Ie. By following
Proposition 1 in AGGR(2019), ff = W' f1;, where W is a k; x k¢ matrix of eigenvectors of R associated
to the k¢ largest eigenvalues. Then, by adding and subtracting appropriately, we can write ff —fi=

W’(flt — Hyf1) + (H{W — W) f11. By the ¢,-inequality, we can bound part (i) as follows,

<2 | ) -+ - w3 S|
\V—’ — =1

=0p(1) =0p(1)

1 T
72|l
t=1

. . . p
where we let Wy = H{W. It is sufficient to show that %Zthl Hfu, - HlfltH = O,(1). By following
the arguments in GP(2014) (i.e., their Lemma C.1-(i)), given that E|e;;|*’ < M < oo and E|| f;:||*? <

s P
M < oo, we have ST Hflt - HlfltH = Op(1). If we assume that {fj;} and {¢;;+} are independent,
then E| fi||P < M < oo and Ele; ;| < M < oo are sufficient. Next, we show that N% Zf\gl Hj\jz —
A5illP = Op(1). Since Aj = %Yj’ﬁ‘c and Y = FAY + F7Aj + ¢, we can write A; as follows,

. 1 . 1 .
AG = ZYIFC = Z(FOAY + FSAY +¢;) B

Pt T
1 R 1 .
= TA;FC/FC‘F TA;FJS/FC TEJFC
Fepe 1 R . 1 R 1 1
= AS - —ng(FC — F)'F° + TA;?F;'(FC — F°) + ASFS’FC = ](F —F°) + 7 el Fe.
:Ik()

Then, AS; — XS, = — 4 F(FC — FOXS + L(FC— FOYFINS + LFOFSNS  + 4 (FC — FO)ej; + L F%; ;.
We apply the ¢,-inequality and show that each term is Op(1). In particular,

P 1 i 1 P
c < 5p—1 - ‘FC/<F Fc )\c Fc FSAS
1 - 1 cl 178 8 b 1 - 1 g c\/ b 1 - 1 c/ b
o DN FFOEN ||+ DG E = FY || + 5 D || F e
7 =1 7 =1 7 =1

To see that the first term is bounded, note that

p < (HT—I/QFC p) (HT—1/2( — FeHY)

— (ke)P/2 =0,(1)

) ZHA |7 = 0,1).

=0(1)

N
j— A A
Nj E : HT chl(Fc _ FCHC/))‘§,i
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Similarly, for the second term,

—1/2 s
|

P HT—1/2(FC o Fch/

ZIIA 1" = Op(1),

=0(1)

p
- H(Fc _ FCHC/)/.F;)\;J S

:Op(l)

" (R1F51E)" < AL 15307 < M. provided I[P < M < oo.
TN OV R T S DU N
|He|P = |U|]P = O,(1). Given [A3]IP < M, it suffices to show that H%FC'F]‘»9 "o O,(1). By
F e < Ry ENfEf5IP, which is bounded
given E|fit]|*? < M < oo, if ff and f3; are not 1ndependent (otherwise, E|fjlP < M < oo

P
is sufficient). The fourth term can be bounded as - 3 i:1 1( (Fc— FCHY i\l < |T-V2(Fe

NJ
FEH)||P 3 Y02 (171 26,[17 = Op(1), where

ne2 o i T p/2 , Mo
= — <
I) -5 (r5s) =x )

i=1 t=1

where we can show HT‘l/zFJ‘-9

P
, ignoring

We can bound the third term as N%ZZ 1

1 roel s
LFYF;

Markov’s inequality,

—ZHT Vi | = (HT Vg,

given Ele;j [P < M < oo. Similarly, we can bound the last term as N%vazﬁ | T F;,]|P =
Nj e _ .
el (& S0 T2 407) (IT12F9]7) = 0,(1), given Elejal? < M < oo and B[ ffll* < M <

Q.

Part (ii): Note that f 5, is the principal component estimator from Zj; = y;; — A; ff By using the

fact that y;; = AJff + Ajfj, + €5t we can write Zj; as follows.

Eje = yje — NSIE + AGFE = ASJ7 = NS5+ e+ (ASFE = MG ) = A5+ ege.

=€yt

Then, using the identity from the proof of Theorem 1 in Bai| (2003)), we have

jst - H]s ; VS ( Z lqv/)s lt Z ]ln],lt Z l§J lt) ’

where V7 is the ki X k7 matrix of k7 eigenvalues of :j:’ / (TN ) in its diagonal elements and ¢5,, =

1 Nj Cp. . S J s/ . s ] s/
N > il €4,il5it ni = N Zl 1 AT ]lewt, and &), = N >l 1 Ajifjieja- Using this identity and the

cr-inequality, we have

T
zu s < 3 0) 1Hp< S+t zbs zcz),
t=1

bS =
itial ¥ =

1/2
. T 2
denote either sz-,lt, 7757”, or jlt. Then, we can show H§ =1 fj‘ngj,ltH <H§ = 1fﬂxJ ltH )

P
s _ s _ 1
where ai = , and ¢ = 15

N ~ p
5,8 5 ¢s .
jlnj,lt‘ = f’l 7, ltH . Let X1t
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N p/2
(Zszl I j‘?l||2 Zszl |Xj,lt|2> . Under this inequality, we can show that

T p/2 T T
%Z % nylXJ,lt ks)pﬂ . Z < Z Xt ) (k) vz L ZZ Xl
t=1 = t=1 =1

where we use the fact that % Zle | AftHQ = k3. It suffices to show that % Z?:l Zszl Ixjt]? = Op(1).

Starting with x;;; = w;. 1> We can write as

N, p N
AN TEAN .Y | ’
ED I DS SIIENENS o6 3 0T
t=1 1=1 N i=1 T2N; t=1 I=1 i=1
1 T T Nj
2N SN lejusial? + lejuntial® + &uesal’ + & 0eal”)
J =1 1=1 i=1
where we let e; ;1 = € + Cj4t, With ¢j ¢ = )\5’ JE— 5\5’2 ff Using the ¢,-inequality, we can show that
1 T T N; 1 T N; 2 . 2
2N, Dot 2l it ’5j,'t5jil’p < 2N, Y=t iy €4l = Op(1) given that Elej ;| < M < oo.
For the second term, it suffices to show that 1T ZZ LSO 16546127 = Op(1), because T%NJ Sk vazjl leitCj.alt

. . 1 . .
(N}T Zizjl SL |€j7il|2p) (N;T Zi:ﬁ SL ’Cj,it’2p) by using the ¢,- and Cauchy-Schwarz in-
equalities. Using the definition of ¢;;;, we have

N; T
1 . 1 A 2p
7 2 D |l = ZZ\ VI = X8 = £7)
IT =1 1=1 N;T i=1 1=1
N; T
1 U 2p j — 2p
<22p 1 ‘ )\c/ [
e DAUSALIEE S ol

To show that this term is Op(1), it suffices that N% vazjl Hj\;z - )\§7i||2p = 0p(1), and %Z?:l | fe —
fEI?P = Op(1), given that H)\iiﬂm’ < M. Assuming f{ and f}, are independent, provided that
E|fit|** < M and H/\jﬂ»HQP < M, we have N%vazjl H/A\jZ — /\%iHQP = O,(1) (otherwise, we need
E| fit]|* < M). Assuming that fj; and ¢, ;; are independent, given that H)\%HQP <M, Eleju|?? <M
and E| f;]|*? < M, we have L7 ||ff — felI*? = Op(1) (otherwise, we need Ele; | < M and
2p

E| fjt|* < M). The remaining terms can be handled similarly by using ﬁ vazjl ST et

O,(1) and ﬁ Efﬁl Zthl |¢.it]*P = Op(1). For instance, letting x;u = n;, and assuming that fj
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and ;4 are independent, we have that

Nj

1 T T T T
ﬁzz 77]lt|p — NT2 ZZ ‘)\Sl ejlt‘p
t=1 =1 t=1 =1

[

S*ZII Hp< Z!emt (
1 ZT:NJ v

1 T
) ()
t:l =1 =1

1 T
3 ;lup)
=1

l 2

1 - AS 2p
NN

which is Op(1) by showing that ' Zthl ZZVZJI lejit|*? = O,(1) given that ||)\‘;-7iH2p < M and E| f3]]
M. To show that ﬁ ST S e = 0,(1), it is sufficient to have ﬁ ST vazjl lejit|*? =
Nj |4 -
O,(1) and ﬁ S S 164.0* = 0,(1). We can use a similar argument when y;; = f; I
N 13 _ A -
Next, we show that N%.Zi:ﬁ IA3; = (H)7IA3,|IP = Op(1). Note that A3 = L=/F? and =; =

F?AY +ej, where e; = ¢ + (FCA;'T’ — Fcﬁj’) Then, we can write /A\jZ as follows,

’ J,lt

IN

IN

. s s Fse. .
_ J J J It
)\j L= )\‘? .+ T
Fs/FsHs F’jg,ej,i

= L) g+

T T

Fjsl (F FSHS/)

T (H)INS + T NFS — FyHY Yejs + T HIFiley,;

= ()X, -

Under this identity and the ¢,-inequality, we can bound Ni] 25\21 H;\jZ — (Hj’)*lz\jyin by

ZHT LRy — FRH)(H )TN

N;
+*ZIIT - FyHj) JZH”+*ZHT (F7 H) ejall”

The first term is Op(1) since [[A], [P < M < oo and

*ZHT S (Fy—FPHY ) (HY) TN IP < T VRESPIT R (E —FRE ) PGS ) P ZH g

For the second term, we have
N

Z IT~HES = FRH Y ejallP < |T~2(E5 — FPH)|1P | < Z 1T~ 2ejall? | = Op(1).

=1
=0p(1)

=0,(1)
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Similarly, the third term can be bounded as

N; N
|7 EFH Y el < |7 PEIP HIP | < DT 2esall” | = Op(D),
2 L )
7 2= 5117
=0p(1) =0,(1)

given that Ef7[|P < M < oo.
Part (iii): To show ﬁ vazjl Zthl 1€;.it]" = Op(1), we first rewrite £ ;; as follows.
Ejit = Yjar — Nl — N5

= &jit + ()‘gfzftc - )‘c‘,ift) + ()\jlz Jt Aj/z jst)

= ejit = A = HOfE) = (NS = (HO) TN ff = NG HD) T (F = Hi 50 — (N — (H) 7V

Using the identity above and the c,-inequality, we have

N; T 1 N; T 1 N, T
SalP <57 == ZZ N(fe—mefo)]
i=1 t=1 N;T 45 =4
=(a) =(b)
N, T N; T
1 . Z ) 1l)\c c - Z )\sl Hs _HS
TNT i
T =1 =1 z:l t=1

P
it)

=(c) =(d)

Nj T
1 1s s I\ s
S DI (RS

=(e)
To end the proof, we show that (a) through (e) are O,(1). The fact that (a) is O,(1) follows from
Blejal? < M < oc. The term (b) can be bounded by (33215 X6, [17) (4 S5 I1f = HEfeIlP) =
Op(1) using part (i) and [[A],[|P < M. We can also bound the term (c) as

T
. 1/)\c P l Fe|p
ZH ANES TN
t=1

-~

=0p(1) by part (ii)

1 SN .
Cc Iyc C
N;T “ 2 ‘(AN — (HON

where

T T T

1 A _ 1 1 A

SN <2 EEE SO D= B | = 0p(1).
t=1 t=1 t=1

=0,(1) —0,(1) by part (i)
by Bl fell<M<oo
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N 8\ — £s s £s
The term (d) can be bounded by (5= 321 A5, I7) G4 P (4 S5 11f5 = H3 £]P) = Op(1), by
part (i) and [|A3;||P < M < oco. Finally, the last term can be bounded as follows,

T
! ZZ\ PV ZHA DX (%Z\lfﬁ\lp>v
s=1

N;T i=1 t=1
=0p(1) by part (ii)

where
Lz
Zu <2 | e X Zn WP+ 2 S HI | = 0000,
=1
=0,(1) —0,(1) by part (ii)
™
Proof of Lemma

As argued in Remark 3, Condition A* - B* are verified for the wild bootstrap in GP(2014) (for
details, see their proof of Theorem 4.1). Therefore, we focus on Condition C*. Part (i): By Cauchy-

Schwarz inequality, we can show that

) T i 1/2 1 T T 1/2
E E fm],st < =D Il =3 D gt = 0.
T T
s=1

=1 t=1 s=1

4
= Oy(1), by applying Lemma [C.1| with p = 4, it is sufficient to show

: 1T |7
Since we have 7 ., Hf]s

that 4 Zt 1 ZS 1 |’Y] st|4 = Op(1). Noting that Vjst = 0 for s # t and using c,-inequality, we have
that

1 T ' 1 s
59 DUMIERS FMIERS SR o P ) o A
t=1 s=1 t 1|7 =1 J =1 =1

Lemma |C.1| with p = 8 implies the last equality. Part (ii): By letting miy s = Z;‘FZI fy}ist/t}‘%f, we can

write the sufficient condition for part (ii) to be O,(1) as follows.

El*

Il
!
——
M|~
]
B
SR
:ﬁz
3
7
2
?v
W—/

s=1[1=1
1 T T
_ /s ®/ *
- f Z js ]lE (mjk lm]k s)’
s=1[1=1
where
T */ T T Ng
erl Ay er Mg 1 -
* */ * * * ktq * kto _ ~2 ® %
E (mjk,lmjk )=F (Z Vit VN ) (Z Vj,sto VN; =N Z g >\ )\k,ﬁk,zﬂj,zﬂj,st-
ti=1 k to—1 ki1 imt




By noting that 77, = 0 if s # ¢, it follows that

T T T Ng
* */ * ~2 7 * \2
TNk ZZ le ]k,lmjks = TNk ZZ)\ )‘k,iEk,itfj/‘tfjt(Wj,tt)
s=1 [=1 t=1 i1=1
T 2\ 1/2 T

1/2
1 -
(T Z f;l'tfjt(’Y;,tt)2|2> = Op(1),

t=1

1 N
VAN ~2
E Z N,i Mk, i€ it

i=1

1
< fE
Tt:l

where the first parenthesis can be bounded as

1 T 2 T N 1 Ne
72N ;A iMeilh i (TNkZZ M) (M;Mggmy?)

t=1 t=1 i=1
T Ng 1 Ny B
(e S ete) (3 ) - 00
t=1 i=1 =1

given Lemma|[C.I|with p = 4. By Cauchy-Schwarz inequality, we can also bound the second parenthesis

as follows.

1/2 T 1/2
1
Z ’f]tf]t W’j tt) |2 ( Z ’f]tf]t|4> (T 2(7;,%)8)

t=1
/2 1/2

T N;
1 Fo8 1 ~16 _
< (3215 ) R % SE0) Rt}

t=1 i=1

where we apply Lemma |C.1{with p = 16 to obtain N T ST Zl 1 le?t = Op(1). Part (iii): We rewrite

the term as follows,

2 T T /
Z Sti];ti _TZ (Z sti?*) (Z jslekl )
s= s=1 _
TR A N, Ny
T Z Z Z%»sﬂ] sl ( Z Z Ak )‘k,mfz,z'tgz,mz>]
s=1 Lt=1 I=1 i=1 m=1
AN
= f Z Z ] St/y‘],StN Z )‘ )\k,igi,it
=1t=1
1 B
=7 > (s ( Z)\ Ak,ﬁi)#)
- 1/2
1 ] 1/2 T N, 1/2
<| z>_hjul (N 4) (TN >0 k> = 0p(1),
t=1 t=1 i=1

=0p(1) by part(i)
where the third equality follows since E*(E}';,its}zyml) = EkitChmi B (Mk,itMemi) = 0 if either i # m or

t # 1 and the fourth equality follows since 77, = 0 for s # ¢. To verify part (iv), a sufficient condition
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2
: * T r T N g * * * %[ % * : .
is that F Tlf Y et fjs% Yol (—% Yoty )\k,isk’it(ajvissjﬁ - F (gj,isgj,it))> H = O,(1). To simplify

. * _ 1 N 3 * * * %[ % *
the notation, we define VS kst = T% doic /\Mek’it(sj’isajyit —F (53‘,155]',#))-

T T 2 | LT T T
T 2 Z Vikst|| =7 > fish; Tf z Z (VT jkst¥1 ik 1q)
s=1 =1 s=1 =1 t=1 q=1
A T T o N N
o D) WNIT= ) DD BB PPN
s=1[1=1 t=1 g=1 11=112=1

B ek i158 k00 EinsChint = £ (6,01587,06)) (€021 i2q = B (€]01120))] -

=X,

We simplify the expression of X; depending on the choices of j, k, i1,i2, and s,t,q, and [. To simplify
the notation, we let j = k and ignore the group notation (if j # k, under the group independence,
the proof is simpler). If 4y # iz, we have X1 = & & E*(n},)E*(n};) = 0, when s =t # 1 = q or
s =t=1=gq, since n; ~ 1.i.d.N(0,1). Therefore, we only need to consider the case of i1 = is(= ).
For this case, X; takes a non-zero value for three different cases: s =1 # t # ¢ (X1 = é?tequfs)
s=1#t=q Xy =384, and s =1 =t = q (X1 = 10&}). Considering these cases and using

Cauchy-Schwarz inequality and c¢,-inequality, we can bound the above condition as follows.

1 L1 & .
ﬁ SZZE fST tz:; wl,St M Z foS T2 Z Z Z A/)\ 822t87,23€2

t=1g=1"" i=1

By applying Lemmawith p = 8, we can show that % Zz 1 ||fs||4 = 0p(1 ), % ~ ZZ 1 ||>\ H4 O,(1),
and Yot \éit|8 = O,(1). To prove the part (v), E* = 0,(1),

\st lfjs\th 1w2,gkst

where 77/}2 Jk.st = \/7 Zzl =1 2127&@1 kyia kzgt( j,i1s ],zlt E*( ;zls j,ilt))' We have that

T T
fz.fjs\/»zwljkst = %ZZ ~]I'sfjl< ZE* 2,]kstw2,]qu)>
s=1 s=1[=1

To show that this is Op(1), we expand the expression for E*(3 ik, stw2,jk,lq)' Ignoring the group

2

o7



notation and considering the case where j = k, we can rewrite E* (1)} kst ik q) as

N N N N

E*( ;,Ijk Sth,]k lq N2 Z Z Z Z )\ A'54 E* :2t624q<61156j:1t E*(gzsg;t)>(€?3l€’?3q - E*(Eglefgq))] .

7,1 17,27521 ’Lg 114;&23

=Xo

Since X5 is non-zero only if i1 = i3 # is = i4, we consider Xs depending on s,t,q, and [ and
i1 =143 Fig =14. Whent=q#s=1, X9 =
fact that n; ~ 1.1.d.N(0,1). For the other combinations of s,t, ¢, and [, we have X5 = 0. Considering

=2 e _ oz :
wtausallt and when t = ¢ = s =1, Xy = 2, using the

2
this and putting the group notation back, we can bound E* as follows.

1 T 7 1 T
VT Zs:l fj8ﬁ Zt:l ¢§,jk,st

1 . 1 « ’
£ 7ijsizw>2kjkst
\/Tszl \/thl
N; N,
&2
< M- Zf]sfjs Z N N Z Z )‘k zg)‘k l2€k 12t€] i158j,ixt
i1=1ia7#i;
1 & Rl TN PR SR N
FoFo2 =2 =2 =2
SIS AT B ES 9E5 SLES 3D SR IR ACHENED
s=1 s=1 t=1 "7 4 =14y
T 1/2 - N, oy 1/2 - N, oy 1/2
1 4 1 1 9 9 1 1 T
SUES SN RN ES 9 9/ SENEN ) BN ES olE 3 op ERE
s=1 s=1t=1]" 7 i;=1 =1 |V i
T 1/2 N, T 1/2 1/2 1/2
1 1 -
<M (TZHf]SH4> ﬁ Zgél,zlt Z H)‘k22||4 N T Z Z Ek,iat
s=1 I7 =1t=1 127511 ol t=1

2
Part (vi): As a sufﬁcient condition, we can show that %Zstl E* || % ZtT:l VT kst

1 T .
T Zt:l wijk:,st = T2 Zt 1 Zq 1 E” (wl gk, stwl,jk‘,sq)’ we focus on expandmg E” (wﬂjk,stwi,jk,sq)
(ignoring the group notation) as follows.

= Op(1). Since

N N
1
E*( 1,]k st¢l,jk sq) N Z >‘ >‘12 E*[ ;kltgzzt(gzlsgut E* (Ezsgzt))(gz;sg;'kgq - E* (6:2552;11))]
11=112=1
EXg
1 N
< MN Z Agklézztgzzquzs

=1

If iy # i9, we have X3 = 0, since n;; ~ 1.i.d.N(0,1). When i; = i, we have five cases to consider:
1fs7ét7éq,X3:€t€lq ZS;1fs—t7éq,X3:2€ pif s = g # t, X3:2aztaw, if g =1t # s,

’Lq’

o8



X3 = 35115515, andif s=t=gq, X3 = 10‘% Therefore,
Lo | LT N 1 (1 3
5% 3 IATTWETESTAS 3 3> ( S usdds ) -y Y (13°4)
s=1 t=1 gq=1 s=1t=1 g=1 i=1 i=1 t=1
6\ 1/2

by applying Lemma with p = 12. For part (vii), we use similar arguments and show that

2
1 T * 1 T *
T 21 B T D=1 V5 kst
ing the group notation and considering j = k (N; = N}, = N), we can write E*(¢3',,45 ) as follows.

= Op(1), where ¢ ; , is defined in part (v). In particular, ignor-

N N N N

(¢2 stw2 sq NQ Z Z Z Z >‘ AM E* ;kgtguq(gus i1t E*( €irs :1t))(8:358:3q _E*(Ejgsg;kgq))]?

1= 1127521 i3= 114#23

=Xy
where X4 = 0 when i1 =44 # is = i3, and X4 # 0 when i1 = i3 £ ig =iy with s At =qgors=t=gq.
It follows that

1 & 1 & ’ 1 - [ 1
7 Z E* N Z w;,jk,st S M72 Z Z AT2 Z Z )\ )\1267/18 ths’tgt
T JT T N
= t=1 s=1 t=1 i1=11d27#0;
1 T 1 N T N
DM ETD D OE 1 N D SRTRHE Y
T NT
t=1 i1=1s=1 G201
1/2
, L N o\ 1/2 2\ 1/
=M Z ﬁ Z 28?185121t Z Z )‘12)‘12 iot
t:l i1=1 s=1 t=1 zg;ézl
. N T 1/2 ) N T 1/2
< (NT S5t (5 St (s 2 X
i1=1 s=1 Z27’5Z1 ioFiy t=1

given Lemma withp=4. =

Proof of Lemma Part (i): Since f¢ = W'f1; and we can write the factors estimation error
as fjt —Hjf= V;l(Aj,lt +Ajor+ Ajz+ Aja) asin A2 in Appendix A, we can write ftc as follows.

fE=W fi, =W (Hifi + Vi YAie + Avor + Az + Arar))
Vifie + WV (A1 + Avor + Avse + Arag)
= U'[&éﬁz-i-‘i);c(fkrkc - Rss)_l%] + WV (A + Aror + Avge + Ava),
=ff =f1

where we use Wy = H{W and Wy = [Ec+ Es(Igy—ke — RSS)*@)SC]IA] from the proof of Lemma A.4 in
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Appendix A. Note that E.f; = f¢ and E.f;; = f;, under Ho. By letting H¢ = U’, we can rewrite fe

as follows.

fe=Hefe+W WAy 1+ Avor + Avge + Ava) + (I, ke — Res) 7L f5,
1 & 1 & 1 & 1 <&
B s (1 . 1 . 1 . 1 . 1
- Hcftc +W Vl (T Sg_l f1571,st + T 85_1 flsCl,st + T 85_1 flsnl,st + T SE_l fls&l,st) + Op(T )7

where we use i)’ Ty —ke — RSS)*I = Op(éx,QT). For the rest of the terms, we use Lemma A.2 in

Bai| (2003): TZS s = Op(yT2) AT fiiCig = Op(SnhN"Y2); AT fromg =
Op(N~Y2) and 2 50| fiséia = Op(6ypN~Y2). Since Op(0yN~12) = 0,(T71/2) and O, (51T~ Y?) =

0p(T~1/?), we can simplify the asymptotic expansion of f€ up to order 0p(T~1/?) as follows.

T
N N A _
fE=HfE+ WIS Y frams +op(T71?)
s=1

. NAN 1 X 1 /
= Hcfc + leillel ( L > —— /\1 i€1. —— + o0 T_1 2
t 1 , N, m; aclt m p( )

/
-1

=uit

= Hcft + \/TU/[EIUH +(I)sc(Ik1 ke — Rss)il Elult} + Op(Tfl/Q)

=u{? =0, (657) =u{

¢ rc 1 c, () —1/2
= H°ff + Heuy, + 0,(T ,
t /7\71 1t p( )

F1 12

where we use the fact that

=V H; (A Al) by the definition of Hy in the second equality and
use the expression for W in the third equality.

Part (ii): Next, we show the asymptotic expansion of 5\51 up to order op(T_l/ 2). In particular, by
using the fact that A; = %Yj’ Fe and Yj = F°A{ + F7AY + ¢; and substituting appropriately, we can

write 5\571 as follows.
Xy = (H) VNS, + H Z fejir+ HC = Z FEFSINS,
1 T

~ 1 ; 1 R R
+f§xﬁ—H%%m+f§xﬁ—ﬁﬁv%v—TEXﬁ—H%Mﬁ—EﬁW 9N
t=1 t=1

t=1

=(a) =(b) =(¢)

T
1 c rc( fc cpc c\—1/yc
= D HFE(fE = HEf) (HO) VS,
t=1

—(d)

Then, to prove part (ii), we show that the terms (a) through (d) are o,(T~'/?). Using the expansion
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of f¢ from part (i), we can rewrite the term (a) as follows.

T
1
(@) = H e D wnessin + 0p(T7172)
TV, &=

A/Al T N /
- \ —1/2
_HC< N ) TNltE;;)‘lkglktgﬂt‘i‘Op(T )

A/ Al -1 T Np T Np /
=H (= K — > > E( T2
< N, ) TN1 Lo L €1,ktE4 it (51 ktE54, zt TN1 ! 81 JKktE5, zt +0p( )

=0p((T'Ny)=1/2) :O<Nf1(>)
by Ass 5-(a

Similarly, we can show that (b) and (d) are 0,(7~'/2) by replacing f& — Hef¢ with its expansion up
to order 0,(T~1/2). For example, ignoring |[H¢|| = O,(1), the term (d) is %ZtT:l(ftc — HefE) fF =

FA\ —1
(A;Vfl) L ( Al ffe’lt/n) = 0,((TN1)~/2) = 0,(T~1/2) by Assumption 4-(c). Using the
proof of Lemma A.1-(e), we can show that ST ungy, = Op(N~1) and show that (e) = o0,(T~1/2).

Our asymptotic expansions for f¢ and 5\51 are equivalent to those in AGGR(2019) (specifically, (C.92)
and (C.94) in their Online Appendix).

Part (iii): To obtain the asymptotic expansion of f 5, we follow the arguments in AGGR(2019)
closely. Recall that s are principal components of the residuals such that & = v — fc' )\C
Following the arguments in AGGR (2019), by replacing ftc and X;Z with their asymptotic expansions
of order up to 0,(T~'/?) and using the fact that HYH® = ¥_1 + 0,(T~/?), we can rewrite £ as
follows [

s X —1 rc ! s 1 c)l e c 1 _
&jit = <fjt - 2j702cclft) )‘j,z‘ + (53'7” \/7 gt) )\j i ' <ECCIT Z ff &4, lt)) (T 1/2>'

— ~\_s/ N
Jt Eej’it

Using the identity from Bai| (2003)) as in Appendix A.2, we can write H g 5 as follows.
fi— Hi f5 = (V)" (Bjae + Bjat + Bjar),

where

1O
~ o~ X s Fs/ J ]t s Fs/ J ]l
Bju = Z ﬁjzej,z’lej,it i Bjot = Zf]lfgl N, Bjsr = Zf]lf]t —.
=1

12WWe can replace ff and j\jl with their expansions based on alternative group common factors such that ff =W fzt,
where W is ki x k¢ matrix collecting eigenvectors of R* associated to k° eigenvalues. It yields the similar expansion such
that f7 = A7 (f7 + 35uly) ) +0p(T711),
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We show that Bj 14 and Bj 3 are o,(T~

1/2) and Bj 2 have a bias term of order Op(Njflﬂ) up to order

0,(T~1/2) (ignoring H(V;)—IH = Op(1)). Letting w§, = ! f S| ffejir, we first rewrite Bj1; as
follows.

N
L Loy - L ey Ly
],1t Z fjl ; <€j,il \/» ]l )\5’ \/T lc w;,l) <€j7zt — Wujt )\j’z _ ____fc ’L[)C

\/T t Y
Z Zaﬂlsm Z JleZEJ’lth - Z ﬂN Zsjztu(c)/)\ji

jzl

1 o 1., 1
fg it wa I ;Z—TZfﬁstj,nff’w TszlN]zZ G

1 o 1 A 1
- , , /
N TN/ NiT Aj’iuﬂ it Z:f]slz\f N,T &= i 705,
=1 i

T
+ 12 JZNTZflC jcz tC/ i

wj
= Bju,0) + Biae@ + Biaee) + Bianw + Biae) + Biawe) + Biaem + Bjs) + Bjae o)
We can show that all nine terms in Bj1; are o,(I""%/2). We can show that B, 1 = op(T 12y b

applying similar arguments in Lemma A.2 in Bai (2003). We can write the next term as follows

(c)
]1t E ] E )‘] i€54,il Uy

l1 N; Jz1

o /
() L Ajei
< T —
< ma el 5 H Z (

T /
1 5 Aqul
i s H>( )H
VN le; TN
I —(br) ®

Then, (bl)

Op(T—1/2) since it is equivalent to —= (WZI 1 ;-lA;), which is Op(T—1/2) by
Assumption 4-(c). By applying Cauchy-Schwarz inequality,

1/2
b)) < 1 d £'s ﬁsi@ 2 1 d
e < (gL U-HEP) |72

=1

1/2
2

of ~ .

Aj €jl

VN;

= Op(yr)-

Since we can show that maxj<i<r Hu§?” = O,(VT) by Assumption WB3-(c), we have B, 1t,(2) =

(T—1/2). We can use similar arguments to show that Bj11,3) = 0,(T~1/2). Specifically, we can write

Bj1i(3) = < Zl f ]Slu(c ) (\/]7] S Ag'?i)gj,it) N% Then, by using the fact that Zl 1 5 © _

]lu
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c/
A Ejt

O,(8xy) and max; = 0,(T"/?), we can show that Bjii3) = 0p(T~/?). We write the next

term as

f E]zsgjzl chlftc

/

T N;oT
1 i 1 c 1
max [I£] Tijl WZZE%S%Z 1=

<
=1 =1 s=1
< max 1551 |17 Fa 55" i Blesieia)
1<i<T lel \/W \/ﬁzlsl
1TAsleTc /~—1
+ T 2. le;;fsE(%ist?j,z‘l) HECC

By Assumption 4-(b), we have \/ﬁ 25\21 23:1 fé(ejiseji — E(ejiseji)) = Op(1). Then, we can
show that the first term in the square bracket is O ( NV 2). We can decompose the second term

in the square bracket into two parts as follows.

S

J

T
jl—vlz: ]lNTZZfs Ejzsgjzl < %Z( A;l s ]l NjTZZfS 5]7155311

i=1 s=1 =1 1=1 s=1

T
E TS ) WS

i=1 s=1

= Op(OnrT ™) + Op(T7H),

where we use the fact that + Zt 1 H w1 [Sv5s1]| = Op(T2) by following the arguments in the

proof of Lemma A.1-(a). Then, by Assumption 2-(a), we can show that max;<;<7 || ff]| = O,(T*)
and hence, Bj1;,4) = 0p(T~1/2). Using similar arguments, we can also show that Bj 1,5 = op(T71/2).

Similar to the arguments to show that Bj ;o) = op(T_l/Q), we can show that %Zszl ]Sl ﬁ)/ =

AYAS
Op(057). Then, since Bj11,(6) is equivalent to write it as < S SZ g? ) (JT]J) N%_ug-?, we can

show this term is O (5N1T ~1TY2) = 0,(T~Y/2). Next, Bj 1¢,(7) can be bounded as follows.

N
1 L B B
Bjat,m) < Z 1Y ]z NT E AS s 1rilax | £Ell = Op (53T 1/2Nj D = o,(T 1/2y,
i=1 N ,
~~ — 1/4
:OP(‘SRI;") ) ( 1/2) OP(T )

where we use the fact that N% > Nixe we, =

N; c —12
i=1"5,1 ]z \/%(\/ﬁzzzjlzt 1 tgth> 1 /)by

Assumption 4-(c). Following similar arguments, we have Bj 4 g) = N] b = T_1/2). Next,
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Bj 14,(9) can be bounded as follows.

T Nj
1 £ / 1 / —-3/4 —1/2
Bisuiw < 7| 20 FA | | 7 20w mas A7) = Op(T ) = op(717)

N. T 2 ~
S <J\1[J ZZ:JI ’%Zt:l ftcgjvit > Hzccle = Op(l) by
Assumption 4-(a). Since we show that Bjt,6) = op(Tfl/Q) fori=1,...,9, we have Bj1; = op(Tfl/Q).

where we use the fact that HN% ZNI wj ijZ

Next, our goal is to expand B2 up to order op(T_l/Q). We first rewrite Bj o as follows.

S/‘*

o = Z sl ] Ejt
]
J
1 1O 1< 1
OIS WSS O 8 (S OV B oF TR o
T g1t 51 N, 7,i€5,1t T g1t 51 i gt T jl Wy.i
=1 i=1 =1 =1

J i=1
j26,(1) + Bjae2) + Bjat3)-

We have Bj o i) = Op(Nj_l/Q) fori=1,2 and Bj g (3) = op(T_l/z). To see this, we can bound B o (3)

as follows.

S S C 1 - — —
S< Eiﬂ ﬂ> §$A,z P | s 151 = Op(Ny TR — 0, (T12),
N !

=0, (T1/4)

=op<Nj 12

Using the definition of €;, we can decompose Bj 3; into three parts as follows.

£s (C c
Bjst = Z Jl it Z)\Ngﬂl - Z Jl it Z)‘Jz sy Aji

]zl

Zf;lf;z ¥, fZA s
36,1 Bjat2) + Biseo)

Our next goal is to show that Bj 3, ; = op(Tfl/Q) fori =1,2,3. The first term B; 3; (1) can be bounded
by || 74 S Felih; = 0,(033), we
have Bj 3 (1) = op(T~1/2). Bj31(2) can be shown as 0p(T~'/?) by applying that %ZITZI f;lug?/ =

Op(égflT). The last term Bj 3 (3) can be bounded as follows.

Z fatf

= Op(N; T 72)0,(T1%) = 0,(T 117,

maxy ||f]8t|| and since we can show that Hﬁ Zg‘rzl fflez;lAj’
J

N;

]St >~

1 C s/ 1
Fj Zw]’,i/\j,i \/T 1<t<T ||fjt||

i=1

by applying that — Z Jl w§ A = Op(N. ]-_1/ 2) Therefore, we can expand s, up to order o,(T~1/2)
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as follows.

T N
~ 1 _
S =Hif + (V)™ ( > f3 jz> *N,E Aji€jit — E )‘jzAglz jt +o,(T71/2).
=1 Ji=1

]zl

SIAS

rs F ~ A3\ L ~ FS'Fe\ (AYAS
Noting that 7 Zszl f51 13 s equivalent to (V;)_lHj <%) by Hf = (VS) ( T > ( ;V_J), we
J J

can also write f?, as follows.

1 (AYAN T )
s _ 178 | fs 7 ) s ycf —1/2
Jt — Hj Jt + \/ﬁj ( Nj ) Z )‘1718] it Z A ,’LAJ i jt + OP(T )

]'Ll

—q,S
7th

Then, by following the arguments in AGGR(2019) (specifically, the arguments on page 56 in their
Online Appendix), we can show that v}, = ug‘z) and this completes the proof of part (iii).
Part (iv): Recall that 5\3’1 = % Zle ffﬁj,z‘p By expanding &; ;¢ up to order op(T_1/2) as in the

proof of part (iii), we can rewrite 5\51 as follows.

Zf]t (FIXS .+ Ej.0) + 0p(T7H?)

T
Zf s/)\s T Zf;téj,it + Op(T—l/Q)
t=1

1 £S 1 F£s £s (7S £S ~s s —
= fz jt[ jt_( jt_Hj jt)],(H, 1)‘ Z t )Ejit + = ZH fteyzt+0p( 1/2)
_ (gs/ 1XS . Z Hs S) (Hs/ 1XS Z t egzt+ ZHS Ste]zt+0p( *1/2).
=(a) =(b) =(c)

To expand further, we analyze three terms, (a) (b), and (c). By replacmg fs , with ( H s fs )—i—ﬁ s }"’t,

we can decompose (a) further into two parts: LT 1( Hs o )( —HS S) and HS% Et 1 ]st( s

ﬁs ~8)’ By using that = Zt 1 Uity = Op(1), we can show that %Zt 1( Hs f )( —Hs S) =
( Zt 1 ]i ul )+0 (T~/2) = 0,(T~1/?). By Assumption 4-(c), we can also show that HS% Zt 1 jt( fs

HS s) = Op((TN]) 1/2) = 0,(T~1/?). Next, we rewrite (b) as follows.

c/ c _|_0p(T—1/2)

g — H; [5)E0 = TﬁZ%t Ejiit — TN Zuyt Jt Tﬁzuﬁ

—(bn) —(b2) =(b3)

. . As/As —1 As/Ac ) .
Since we can write (b1) = ( M;) (TN ST 1Zz 1 ]Zeﬂt ( _ )T\ﬁ ST 1ajztuﬁ>, using

J

the similar arguments in the proof of part (i), we can show that (b1) = O,(dy3) = 0,(T~1/2). Also,
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using the fact that = ST ujruyy, = Op(1), (b2) = Op(Nj_l) = 0,(T~'/?). We can bound the term (b3)

as follows.

1

ba) <
(b3) < T,

1 T
7o

t=1

e 1 L flog ;) = o, (T2
11217?](\711)”— TNjOp (\/T) Op(\/log N;) = o, (T~/%),

where we use maxi<;j<n w§; = Op(y/log N;) by Assumption WB3-(b) and + Z;‘FZI ug-i)f“ = 0,(T~1/?)
by Assumption 4-(c). Next, we expand the term (c) by using the definition of €; ;, ignoring ﬁ; = 0p(1).

T T T
7 c)/ 1 Fs pcl _ 1 7 —1/2
Z jtej,lt tz:; f;tgj:it Tﬁ Z f]t jt ;, - T\/T tz:; fjst tc ch',i - f tzz; f;t€j7it + OP(T / )

N

=(c1) =(c2)
We can show the terms (c;) and (cp) are o,(T~'/2). Using the similar arguments above, we can
show that (c1) = O,((TN;)~Y2) = 0,(T~'/?) by Assumption 4-(c). By using the definition such
that fst = fi - f]j 2L fE, we can show that (c) = 0. Finally, by plugging all the terms back

into expansion of A%, and keeping only the terms non-negligible up to order op(T_l/ 2), we have the

VK
S .
following expansion for A7 ;:

T
. Lo L1 ~ B
A= (H) I, + Hj > Fiegan+ op(T71).
t=1

_ N1
Since we can show that H{'H? = (% S £ Jst’) + 0,(T~1/?), we can show this expansion is

equivalent to the expansion of A%, in AGGR(2019) (i.e., equation (C.95) in their Online Appendix).

ji
[

Proof of Theorem We first verify Theorem and then Proposition Given
Lemma it suffices to show that the wild bootstrap in Algorithm [I] satisfies Condition D* and
Condition E*.

Condition D*: Recall that B* = tr(%;). By the fact that 7;; are 1.i.d.N(0, 1) across (j,4,1),

T
1 * * * * */ * * Sk ok
= TZE UU") = 1k TZE 1? lt )+ = ZE 2? 2t M?vzu,n + Xgy.20-
t_

=5

*
u,11 _E

U,22

NA\ T A,
* 7
Since uj, = N , we can write Eu i for 7 = 1,2 as follows.

. NA\
i =\ |\ T,

Z| -
=2
>
b
S Q
S
S|~
-
M
S
=
Z[2
<.
N~
|
Il
~/
2|
< m>
N——
1
<
N
=
MZ -
o
N~
|

66



where we define T; = N >oih N \j )\'lTZt 1 €74+ Next, recall that B = tr(X.'%y). For example, by
Assumption WB2, we have Yy = MNEM,H + Eugg, where

-1

. NAN 1 O NA;
R = D2 NN | (= )
N;j Nj = ’ N;j

(c)

and v;; = %ZtT,l E(%ta) Our goal is to show that Eu” = Sy + 0p(T71/2). In fact, since
the asymptotic expansions of /\C and )\S are equivalent to those in AGGR (2019), by applying their
Lemma B.8, we can show that Ei{, i = Eu,jj +o0,(T -1/ 2). In particular, by using asymptotic expansions

in Lemma C.3 and by stacking over ¢ for )\ ; and \¢ .. we have the following expansions:

5
AcC c 1 c s& o« — oy — _
AS = (Aj + \?ij +Aj2j,czccl> (H)™L + 0, (T

As s 1 s [78\— —

~1
where W = (\th L€t ff )Z ! and We = (th 165t ) < Et 1 ;’t ]t) . Then, we have
the following expansion, which is equivalent to the equation (C.98) in AGGR (2019):

A= <A N fﬂQﬂ>H§1+%<T”2>’

0 0 HC 0
- and H; = .
ﬁ@@;J / L @]

Similar to the arguments in AGGR (2019) and by our Assumption 4-(a) and (c), we can show that

where

%ZWfEWy%Z

NA; NA;
77 (’H/-)_l< Jj + 7(LA R )) (7‘[‘)_1—{—0 (T—I/Q)
) A, )
N, Tt e e
where Ly ; = (%) Qj. The rest of the proof similarly follows the arguments in Lemma B.8 in
J

AGGR (2019).

Condition E*: For simplicity, we assume that k¢ = 1 and ki =0 for j=1,2 and Ny = No = N.
We first derive (. Using Algorithm 1, we have

1/1 <& o I T T
- 1<TZVW*(ZX”)+TZZCOU*(ZJ*\WZJ’QS ) — ZTZ “(Z50):
t=1 t=1 s>t pat

where we use Cov* (Zj{,’t,Z& ;) = 0 for t # s since uy, and up are independent for either ¢ # s or

J # k under Assumption WB2. We can write Var* (2} ,) as

* * * *2 %2 * * * ok
Var*(Zy,) = E (217 + 257 + 22125, + duffusy — (2, + 25)utuy),

where 27, = uji — E*(u *2) By Assumption WB2, E*(z],23,) = 0 and E*(zjuj,us) = 0. In ad-

-4
A, R

o *( %2\ Jd 1 N Nj 3232 2 =2 s () k2, %2\
dition, we can show that E*(z};) = 2< N ) N Dic1 Dokt AjiAj kil ke and BT (uifuly) =
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A Ay 2 AbAs -2 1 Ny Na A2 )2 g2 22 Usi th : ite QF
1 NT 2oich 2o j21 AL NS ;€T €5y Using these expressions, we can rewrite (, as

follows.

~ o~ —4 T
1| AA 1 L 1
9525 ( N, ) QZZ 1A 1,3 th;glzt‘gl,]t

11]1
-~ ~ —4 T
A A JREREREE 1
+(N2) AN ILEN LD
- o~ —2 ~ ~ -2 T
A Ay AL A, M o 1
+2 [ =L 2 A, & 5
() (%) W 2 2 1 (7 2

= (I) + (II) + (I11).

To show that €, 2y Qu, first note that under Assumption WB2, Oy = %(Zu,n + Y1.22)?, where
Y005 = Ump_y00 Ypsjj. The proof follows by showing that (I) and (IT) converge in probability to Ean
and 2124,22, respectively, and (III) converges in probability to 23 11322. For each j = 1,2, we can

N N _ N;
show that gz Y10y Sy A202 L3 82,82 = Q2.(0) + 0p(1), where Qj; = & 377 Ajijui By
appropriately adding and subtracting, a detailed proof involves three steps (ignoring the group nota-
. . T ~) ..
tion): (i) ﬁ Zz] 1 /\2)‘2 (l P Ezzt‘g?t - 5?@3‘1&) = op(1), (ii) ﬁ Zz] 1(/\2>\2 /\12)‘2) Zt 1 zte
op(1), and (iii) qu 1)\2)\2< ST EhEs — 'y”’y]]) = 0p(1). By Assumption WB3-(a), we can
show that f (\f ST EhEs — E(e?tez?t)) = 0,(T~1/?), which gives us (iii) = 0,(1). Next, to show

that (ii) = o0,(1), we first rewrite the term as follows:

N2 Z A2 B ( Zeneﬁ> N Z — X )\2< Zsltgﬁ> (i1 — a) + (ii — b),

i,7=1

by using that )\2)\2 )\?)\? = (5\12 — A?))\? + (5\? — )\]2)5\12 Using Cauchy-Schwarz inequality, we have

T t=1 i=1 j=1
- N o\ 1/2 . N 2\ 1/2
1 1 ~ 1 1
< (TZ D BEEPE =SSN | = (- aa) (i — ab)
t=1 i=1 t=1 j=1

i=1 t=1 i=1
=0p(1)
where we use the following fact
1 1 1 logN
NZ 2N 4 Ai)? <max])\—)\| Z p<N+ - )
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by Assumption WB3-(b) and by following |Gongalves and Perron (2020) (see proof of their Lemma

Jjt Jgt Jt Jt

B.2.). Finally, for part (i), using that £2,62, — e2,e2, = &%(8%, —€2,) + (&2 — €3)e? £7; and decompose (i)
(i-b). We can rewrite (i-a) as follows:

into two parts: (i-a) and

T .
t=1 =1 j=1
11 & A E] & N
- (TZ Nz/\??t TZ NZ/\g(f‘f?t E?t) = (i — aa)"?(i — ab)"/?.
t=1 i=1 t=1 j=1

We can show that (i—aa) = Op(1). Since we can write (i—ab) < <% SV \;\1\4) <ﬁ SN 18— 5%\2),
our goal is to show that = SN 182 — €212 = 0,(1). Since & — €2 = (it — eut) (Eit + €it), We

have

;| LN N
722 ’51275 zt|2 < = Zmax Eit — Eit) NZ Ei +eu)?
t=1 i=1 i=1
o 1/2 T
2 ) Z N

2\ 1/2

511? + 5zt
i=1

1 T
(TZ i<N

max(sit — Sit)
t=1

N
=0p(1)
By applying similar arguments in (Gongalves and Perron (2020)) (proof of their Lemma B.2), we can
show that 7 S |max;<n (Eir — £i¢)? | =0, << Ly logTN> ) by Lemma |C.1{and Assumption WB3-
(b). The proof for (i-b) is similar.

Next, we show that %ngl/z Z;‘le ZN4 ﬂp N(0,1). We let wy, = (Qu)*_lﬂZ}"V’t (given that
Z}Q,t depends on 71; and 7, Z}iﬁt is an independent array) and apply a CLT for heterogeneous
independent random vectors on ﬁ Zthl wi ;- We have E*(wj ;) = 0 and Var*(ﬁ Zthl wiy) =1
Therefore, it suffices to show that E*\w}‘V’th
is sufficient to show that E*\Z}'{”Fd = 0,(1) (E*|w}"v’t\2d < \QZ_l/2|2dE*\ZJ’§,’t\2d). Note that Zy, =

u;‘tz — E*(u}*?) By applying the c,-inequality, we have

= Op(1) for some d > 1 (Lyapunov’s condition) and it

* *
2 Nt 2N — 2u7,ub,, where z]t
*| 7k |12d 2d—1 K|k 2d | % 2d * * % 12d
B*| 25, < 37 (B2t ™ o+ B 125 0+ EY2ui unf™)

We need to show that E*|z;‘ft|2d = 0,(1) and E*|uf,u3,|** = O,(1). To show that E*|uf,u3,|*? = O,(1),
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with d = 2, it suffices to show that E*|uf,|* = O,(1) (- EX|uiub,|?? < B |uf, |24 E*ub,|??) as follows.

E :/\nggzt

]zl

S 4 N
/
N, N2 7511 V512 N483 7\ ta €j,i1t€5,i2t%j,iat € iat
J

J 142,304

AA RN\ 2
NA; AA
7| 22 2 22 N 12 22
SU( N, ) N2 Z)\Jn 3,i2€5,i1tE 5,40t — "7( N, ) ( E Aj i€ “t> ,

11,82

4

B!

IN
/\>
I
=25
~___—
L

where E*(€7; 165 10165 ist€hiat) < 774 = maX{E*(n;{it),l} and E*(n;-{it) < C. Next, we show that

E*|z;t|2d = Op(1). Since 2}, = u — E*(u] *2) we have

B = B - B (u3?)
22d 1(E*”U,*2’2d —|—E*’E*( )|2d) < CE*|U |4d
where C' is some positive constant. Taking d = 2, it is sufficient to show that
8 ~
Erug[” = N4 D N Nisint - Ejigt B (e - jist) = Op(1),

J i1,

N)\8~8 _

Since n; 4 ~ 1.i.d.N(0,1) we have four cases to consider. If iy = = ig, we have N4 Yo 5 €5t

E*(n?}it)% <% Zl 1)\§Z~§52t) = Op(1 ) since E*|n;+|® < C. For the second case, we consider i; =
i9,...,i7 = ig, we have E*]u;t\s = N4 D itmAktl )\ﬂ/\j m)\ik)\]léj Ztaj mtej ktsj ;- The third case is
i1 =19 = i3 = 14 and i5 = ... = ig. In this case, we can bound it as Clﬁ (% 25\71 /\;1Z~J Zt>2 since
E*|77j,,;t|4 < (4. Finally, we consider when i1 = = ig and 77 = 1g, and in this case, we can bound
the term as Co (% ZZ 1 )\]62~?71t> (% ZN )‘?,1 ~] Zt) where we use E*[n;|% < Cs.

Finally, we show that under the alternative hypothesis, the wild bootstrap method satisfies Con-
dition F* and therefore Proposition follows. Under the alternative hypothesis, we have no group
common factor in our simple setting. The one factor that we extract from each group is group-specific

factor. Provided that the group common factor, ff is estimated from using the first group factor, fu,

there is an additional bias term appear only in the second group. Particularly, we have
XQJ‘ =®Ny; + Op(l), (15)
€23t = €2,it + A2i(far — D f1z) + 0p(1). (16)

Note that ® = corr(fit, for) and under the alternative hypothesis, the estimated factor loadings in the
second group are consistently estimate only a portion of the true factor loadings of the second group.

Moreover, the residual term in the second group will be containing the bias term. Using and ,
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we can rewrite the term related to the second group in bootstrap bias, B* as following:

1 &, a2 4
@;ﬁ) szqu4MZM)Nz (r )

=1 =1 =1

2 (1 & 1 Ly
2 3
o <N2 ; /\Q,l) ~ Z Ao (T ; e2,it(fat — (I)flt>>

1 (1 & ) - 1 e T
T3 <N22>‘2”'> NQZ ( tz:;f% D f1r) >+op(1).

i i=1
We can show that all the terms are O,(1) under Assumption 2 and 3.

We also need to show that ﬁ Zthl Zyt = Op(1) under the alternative hypothesis. To show
this, it is sufficient to show that Var* (ﬁ Z;le Z]*V’t) = Op(1). Under the Assumption WB2, we
have Cov(Zy,, Zy ) = 0 and Var* (\% ST Z]*Vt) = %ZtT 1 Var(Zy,). Since we showed that
Var(Zy,) = E*(2:2) + E*(232) + 4E* (ut?u3?) in the proof of Condition E*, where 25 = u — E*(u] *2))
we focus on three terms: E*(2;2), E*(232) and E*(ui?us?). We can show that the first term is Op( )

as follows.

-~ o~ -2 N
L MA T L N A
ma-2(B0) g ot dt -2 (M) i Sttt )
3,j=1 7,j=1

where we can obtain the second equality by using 5\1,1- = A1 +0p(1) and &1 4 = €14 + 0p(1). This
is true when we use the factor from the first group as the group common factor. Then, we can show

that 1 Zt L E* (%) = 0,(1) under our assumptions. For the second term, we have

o~ —2
N A5 A 9
E ( 2) =2 ( ]2\72 ) N2 Z A 2,]8% nfg% gt

i,j=1

2 [ A)A 1 &

T2 < N22> N2 Z )‘22)\2](522t+)\22(f2t @ f11)) (52,jt+)‘2,j(f2t_q)f1t))2
7,7=1

2 [A5A, 1
-2 < No ) Z )‘ 52 zt52 gt T A3 g2, St (far — @ f10)° + 2>\2,j5%’it527jt(f2t — ®f1y)
i,7=1

+ 2365 i (far — ®F10)° + A5 05 5 (far — @ f1e)* + 203 Mo jen i (for — ®f11)” + 20082085 ji(for —

+ 2)\2,2‘)\%,]'52,%(12215 — ®f1)% 4+ 4haidajea e i (for — D f10)?),

where we use and to obtain the second equality. Using the final equality, we can show that
T Zt 1 E*(Z’Q*t) Op(1). Similarly, we can show that E*(uj7u3?) = Op(1). =
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P f11)



References

Andreou, E., Gagliardini, P., Ghysels, E., & Rubin, M. (2019). Inference in group factor models with
an application to mixed-frequency data. Econometrica, 87(4), 1267-1305.

Andreou, E., Gagliardini, P., Ghysels, E., & Rubin, M. (2022). Three Common Factors (CEPR
Discussion Papers No. 17225). C.E.P.R. Discussion Papers. Retrieved from https://ideas
.repec.org/p/cpr/ceprdp/17225.html

Andreou, E., Gagliardini, P., Ghysels, E., & Rubin, M. (2024). Spanning latent and observable factors.
Journal of Econometrics, 105743. Retrieved from https://www.sciencedirect.com/science/
article/pii/S0304407624000897 doi: https://doi.org/10.1016/j.jeconom.2024.105743

Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1), 135-171.

Bai, J., & Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for factor-
augmented regressions. FEconometrica, 7/ (4), 1133-1150.

Bai, J., & Ng, S. (2013). Principal components estimation and identification of static factors. Journal
of Econometrics, 176(1), 18-29.

Bickel, P. J., & Levina, E. (2008a). Covariance regularization by thresholding. The Annals of
Statistics, 36(6), 2577-2604.

Bickel, P. J., & Levina, E. (2008b). Regularized estimation of large covariance matrices. The Annals
of Statistics, 36(1), 199-227.

Brillinger, D. R. (2001). Time Series: Data Analysis and Theory. STAM.

Cai, T., & Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. Journal of
the American Statistical Association, 106(494), 672-684.

Chamberlain, G., & Rothschild, M. (1982). Arbitrage, factor structure, and mean-variance analysis
on large asset markets. National Bureau of Economic Research Cambridge, Mass., USA.
Davidson, R., & MacKinnon, J. G. (1999). The size distortion of bootstrap tests. Econometric Theory,

15(3), 361-376.

Eichengreen, B., Mody, A., Nedeljkovic, M., & Sarno, L. (2012). How the subprime crisis went global:
Evidence from bank credit default swap spreads. Journal of International Money and Finance,
31(5), 1299-1318.

Fan, J., Liao, Y., & Mincheva, M. (2011). High dimensional covariance matrix estimation in approxi-
mate factor models. The Annals of Statistics, 39(6), 3320.

Fan, J., Liao, Y., & Mincheva, M. (2013). Large covariance estimation by thresholding principal
orthogonal complements. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 75(4), 603—680.

Fan, J., Liao, Y., & Yao, J. (2015). Power enhancement in high-dimensional cross-sectional tests.
Econometrica, 83(4), 1497-1541.

Gagliardini, P., Ossola, E., & Scaillet, O. (2016). Time-varying risk premium in large cross-sectional
equity data sets. FEconometrica, 84(3), 985-1046.

Gallant, A., & White, H. (1988). A Unified Theory of Estimation and Inference for Nonlinear Dynamic
Models. B. Blackwell. Retrieved from https://books.google.ca/books?id=VVOqQgAACAAJ

72



Gongalves, S. (2011). The moving blocks bootstrap for panel linear regression models with individual
fixed effects. Econometric Theory, 27(5), 1048-1082.

Gongalves, S., & Perron, B. (2014). Bootstrapping factor-augmented regression models. Journal of
Econometrics, 182(1), 156-173.

Gongalves, S., & Perron, B. (2020). Bootstrapping factor models with cross sectional dependence.
Journal of Econometrics, 218(2), 476-495.

Gongalves, S., McCracken, M. W., & Perron, B. (2017). Tests of equal accuracy for nested models
with estimated factors. Journal of Econometrics, 198(2), 231-252. Retrieved from https://
www.sciencedirect.com/science/article/pii/S0304407617300180  doi: https://doi.org/
10.1016/j.jeconom.2017.01.004

Gospodinov, N., & Ng, S. (2013). Commodity prices, convenience yields, and inflation. Review of
Economics and Statistics, 95(1), 206-219.

Kock, A. B., & Callot, L. (2015). Oracle inequalities for high dimensional vector autoregressions.
Journal of Econometrics, 186(2), 325-344.

Koh, J. (2022). Bootstrapping factor-midas regression models.

Krampe, J., & Margaritella, L. (2021). Dynamic factor models with sparse var idiosyncratic compo-
nents. arXiv preprint arXiw:2112.07149.

Krampe, J., & Paparoditis, E. (2021). Sparsity concepts and estimation procedures for high-
dimensional vector autoregressive models. Journal of Time Series Analysis, 42(5-6), 554-579.

Ludvigson, S. C., & Ng, S. (2007). The empirical risk-return relation: A factor analysis approach.
Journal of Financial Economics, 83(1), 171-222.

Ludvigson, S. C., & Ng, S. (2009). Macro factors in bond risk premia. The Review of Financial
Studies, 22(12), 5027-5067.

MacKinnon, J. G. (2009). Bootstrap hypothesis testing. Handbook of Computational Econometrics,
183, 213.

McMurry, T. L., & Politis, D. N. (2010). Banded and tapered estimates for autocovariance matrices
and the linear process bootstrap. Journal of Time Series Analysis, 31(6), 471-482.

Neely, C. J., Rapach, D. E., Tu, J., & Zhou, G. (2014). Forecasting the equity risk premium: the role
of technical indicators. Management science, 60(7), 1772-1791.

Rothman, A. J., Levina, E., & Zhu, J. (2009). Generalized thresholding of large covariance matrices.
Journal of the American Statistical Association, 104 (485), 177-186.

Schott, J. R. (2016). Matriz Analysis for Statistics. John Wiley & Sons.

Stock, J. H., & Watson, M. W. (2002). Forecasting using principal components from a large number
of predictors. Journal of the American Statistical Association, 97(460), 1167-1179.

Wu, J. C., & Xia, F. D. (2016). Measuring the macroeconomic impact of monetary policy at the zero
lower bound. Journal of Money, Credit and Banking, 48(2-3), 253-291.

73



	Introduction
	Framework
	The group panel factor model
	The testing problem
	Canonical correlations, common and group-specific factors and their loadings
	The test statistic and its asymptotic distribution

	A general bootstrap scheme
	The bootstrap data generating process and the bootstrap statistics

	Specific bootstrap schemes
	The wild bootstrap method
	An extension: AR-CSD bootstrap method

	Simulations
	Conclusions
	Asymptotic theory
	Primitive assumptions
	Asymptotic expansion of the sample covariance of the factors estimation error
	Proof of Theorem 2.1

	Bootstrap results
	Bootstrap high level conditions
	Asymptotic expansion of the sample covariance of the bootstrap factors estimation error
	Proof of bootstrap results in Section 3

	Proof of wild bootstrap results in Section 4.1

