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Abstract

Andreou et al. (2019) have proposed a test for common factors based on canonical correlations

between factors estimated separately from each group. We propose a simple bootstrap test that

avoids the need to estimate the bias and variance of the canonical correlations explicitly and provide

high-level conditions for its validity. We verify these conditions for a wild bootstrap scheme similar

to the one proposed in Gonçalves and Perron (2014). Simulation experiments show that this

bootstrap approach leads to null rejection rates closer to the nominal level in all of our designs

compared to the asymptotic framework.

1 Introduction

Factor models have been extensively used in the past decades to reduce dimensions of large data

sets. They are now widely used in forecasting, as controls in regressions, and as a tool to model

cross-sectional dependence.

Andreou et al. (2019) have proposed a test of whether two groups of data contain common factors.

The test consists in estimating a set of factors for each subgroup using principal components and

testing whether some canonical correlations between these two groups of estimated factors are 1 as

they would be if there are factors common to both groups of data. Inference in this situation is

complicated by the need to account for the preliminary estimation of the factors. The asymptotic
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theory in Andreou et al. (2019) is highly nonstandard with non-standard rates of convergence and the

presence of an asymptotic bias. Under restrictive assumptions, they propose an estimator for this bias

and construct a feasible statistic. However, their simulation results suggest that, even under these

restrictive assumptions, their statistic can exhibit level distortions.

This approach was applied in Andreou et al. (2022) to sets of returns on individual stocks and on

portfolios. In principle, these two sets of returns should share a common set of factors that represent

the stochastic discount factor. The authors find a set of 3 common factors that price both individual

stocks and sorted portfolios. They also find that 10 principal components from the large number of

factors proposed in the literature to price stocks (the factor zoo) are needed to span the space of these

three common factors.

This paper proposes the bootstrap as an alternative inference method. Our main contribution is to

propose a simple bootstrap test that avoids the need to estimate the bias and variance of the canonical

correlations explicitly. We show its validity under a set of high-level conditions that allow for weak

dependence on the data generating process. The specific bootstrap scheme that is used depends on

the assumptions a researcher is willing to make about this dependence.

For example, if a researcher is willing to assume that the idiosyncratic terms do not exhibit cross-

sectional or serial correlation, we show that a wild bootstrap is valid in this context. This is analogous

to the results in Gonçalves and Perron (2014) who showed the validity of a wild bootstrap in the context

of factor-augmented regression models. If the presence of cross-sectional dependence is important, a

researcher could instead use the cross-sectional dependent bootstrap of Gonçalves and Perron (2020).

If serial correlation in the idiosyncratic errors is relevant, Koh (2022) proposed an autoregressive sieve

bootstrap for factor models. Finally, we also discuss an extension of this method that allows for

cross-sectional and serial dependence in the idiosyncratic errors.

The bootstrap has recently been applied in Andreou et al. (2024) to test for the number of common

factors. Contrary to our framework which follows Andreou et al. (2019), one set of the factors is

assumed to be observed, implying that their bootstrap method is different from ours.

The remainder of the paper is organized as follows. Section 2 describes the model and the testing

problem in Andreou et al. (2019). Section 3 introduces a general bootstrap scheme in this context

and provides a set of high level conditions under which the bootstrap test is asymptotically valid

under the null hypothesis. We also provide a set of sufficient conditions that ensure the bootstrap

test is consistent under the alternative hypothesis. Section 4 verifies these conditions for the wild

bootstrap method of Gonçalves and Perron (2014) under a set of assumptions similar to those in

Andreou et al. (2019). Section 5 provides simulation results and Section 6 concludes. We provide

three appendices. Appendix A contains a set of assumptions under which we derive the limiting

distribution of the original test statistic as well as auxiliary lemmas used to derive this asymptotic

distribution. Appendix B contains a set of bootstrap high level conditions that mirror the primitive

assumptions in Appendix A. It also provides the bootstrap analog of the auxiliary lemmas introduced
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in Appendix A, which are used to prove the bootstrap results in Section 3. Finally, Appendix C

contains the proofs of the bootstrap results for the wild bootstrap method proposed in Section 4.

A final word on notation. For a bootstrap sequence, say X∗N,T , we use X∗N,T
p∗→p 0, or, equivalently,

or X∗N,T
p∗→ 0, as N,T → ∞, in probability, to mean that, for any ε > 0, P ∗(|X∗N,T | > ε) →p 0,

where P ∗ denotes the probability measure conditionally on the original data. An equivalent notation

is X∗N,T = op∗(1) (where we omit the qualification “in probability” for brevity). We also write X∗N,T =

Op∗(1) to mean that P ∗(|X∗N,T | > M)→p 0 for some large enough M . Finally, we write X∗N,T
d∗→p X

or, equivalently, X∗N,T
d∗→ X, in probability, to mean that, for all continuity points x ∈ R of the cdf of

X, say F (x) ≡ P (X ≤ x), we have that P ∗(X∗N,T ≤ x)− F (x)→p 0.

2 Framework

2.1 The group panel factor model

Following Andreou et al. (2019) (henceforth AGGR(2019)), we consider a group factor panel model

with two groups, both driven by a set of common factors and a set of specific factors:[
y1t

y2t

]
=

[
Λc1 Λs1 0

Λc2 0 Λs2

] f ct

fs1t
fs2t

+

[
ε1t

ε2t

]
.

Here, y1t and y2t are N1 × 1 and N2 × 1 vectors, respectively. In particular, yjt =
[
yj,1t, . . . , yj,Njt

]′
collects the Nj observations in group j at time t. We use a similar notation to denote εjt. The kc × 1

vector f ct denotes the common factors whereas fsjt is a ksj ×1 vector which contains the factors specific

to group j. The matrices Λcj and Λsj contain the factor loadings associated with the common factors

and the group specific factors for group j, respectively. Thus, Λcj is Nj × kc and Λsj is Nj × ksj . We let

kj ≡ kc + ksj denote the total number of factors in each sub-panel and define k≡ min (k1, k2). Finally,

we let fjt =

(
(f ct )′ ,

(
fsjt

)′)′
define the kj × 1 vector that collects all factors in each group. Their

variance-covariance matrices are Vjl ≡ E (fjtf
′
lt), j, l = 1, 2. As in AGGR(2019), we assume that the

common and group-specific factors have mean zero, variance-covariance matrix equal to the identity

matrix, and that they are orthogonal within each group:

E (fjt) = 0 and Vjj ≡ V ar (fjt) = V ar

(
f ct

fsj,t

)
=

[
Ikc 0

0 Iksj

]
= Ikj .

However, we allow for the possibility that fs1t and f s2t are correlated with covariance matrix Φ.

2.2 The testing problem

AGGR(2019) propose an inference procedure for determining the number of common factors kc. Their

procedure is based on the fact that the canonical correlations between the two sets of factors f1t and
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f2t identify the common factor space. Specifically, let ρ1 ≥ ρ2 ≥ . . . ≥ ρk
denote the ordered canonical

correlations between f1t and f2t. The squared canonical correlations ρ2
l for l = 1, . . . ,k are defined as

the k largest eigenvalues of the matrix R = V −1
11 V12V

−1
22 V21 (or equivalently of Ŕ = V −1

22 V21V
−1

11 V12).

Proposition 1 of AGGR(2019) shows that if kc > 0, the largest kc canonical correlations are equal to

1 and the remaining k−kc are strictly less than 1. This corresponds to the null hypothesis that there

are kc common factors, i.e.,

H0 : ρ1 = . . . = ρkc = 1 > ρkc+1 ≥ . . . ≥ ρk.

To test H0, AGGR(2019) propose a test statistic based on

ξ̂ (kc) =

kc∑
l=1

ρ̂l,

where ρ̂l is the sample analogue of ρl (we define these estimators below). Under the null, ξ̂ (kc) should

be close to kc, whereas it should be less than kc under the alternative hypothesis H1. Here, H1 is

defined as

H1 : ∃ 0 ≤ r < kc s.t. ρ1 = . . . = ρr = 1 > ρr+1 ≥ . . . ≥ ρk,

with the understanding that if r = 0, ρl < 1 for all l = 1, . . . ,k, corresponding to the absence of

common factors. Thus, we reject the null when ξ̂ (kc)− kc is negative and large.

The critical value used in AGGR(2019) is obtained from the asymptotic distribution of the test

statistic when N1, N2 and T → ∞. Our goal in this paper is to propose an alternative method of

inference based on the bootstrap.

2.3 Canonical correlations, common and group-specific factors and their loadings

Here, we define the estimators ρ̂l, l = 1, . . . ,k. In the process of doing so, we also define the estimators

of the common and group-specific factors and factor loadings. These will be used to form our bootstrap

data generating process.

We start by extracting the first kj principal components for each group j, with j = 1, 2. In

particular, let Yj denote the observed data matrix of size T × Nj for group j. The factor model for

this group can be written as

Yj = FjΛ
′
j + εj , (1)

where εj is T ×Nj , Fj = (fj1, . . . , fjT )′ is T × kj , and Λj is Nj × kj .
Given Yj , we estimate Fj and Λj with the standard method of principal components. In particular,

Fj is estimated with the T ×kj matrix F̂j =
(
f̂j1, . . . , f̂jT

)′
composed of

√
T times the eigenvec-

tors corresponding to the kj largest eigenvalues of of YjY
′
j /TNj (arranged in decreasing order), where

the normalization
F̂ ′j F̂j

T = Ikj is used. The factor loading matrix is Λ̂j = Y ′j F̂j/T .

The estimators ρ̂l, l = 1, . . . ,k are obtained from the eigenvalues of the sample analogue of R.
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Specifically, letting

V̂jl =
1

T
F̂ ′jF̂l =

1

T

T∑
t=1

f̂jtf̂
′
lt, j, l = 1, 2,

we can define1

R̂ = V̂ −1
11 V̂12V̂

−1
22 V̂21.

The kc largest eigenvalues of R̂ are denoted by ρ̂2
l , l = 1, . . . , kc. They correspond to the largest kc

sample squared canonical correlations between f̂1t and f̂2t.

For our bootstrap data generating process (to be defined in the next section), we also need estimates

of the common and group-specific factors and loadings. These estimates are also used to obtain the

test statistic proposed by AGGR(2019). Hence, we describe them next.

First, using Definition 1 of AGGR(2019), we can estimate the common factors as follows. Let

the kc associated eigenvectors of R̂ (the canonical directions) be collected in the k1 × kc matrix Ŵ ,

normalized to have length one, e.g. Ŵ ′V̂11Ŵ = Ŵ ′Ŵ = Ik1 since V̂11 = Ik1 . Given Ŵ , an estimator

of the common factors f ct is f̂ ct = Ŵ ′f̂1t.

The group-specific factors fsjt (j = 1, 2) can then be estimated using Definition 2 of AGGR(2019).

In particular, f̂sjt are obtained by applying the method of principal components to the T×Nj matrix of

residuals Ξj obtained from regressing yjt on the estimated common components f̂ ct . More specifically,

given model (1), we can further decompose Fj and Λj in terms of common and group-specific factors

and factor loadings to write

Yj = F cΛc′j + F sj Λs′j + εj .

Let F̂ c =
(
f̂ c1 , . . . , f̂ cT

)′
denote the T × kc matrix of the kc largest estimated common factors.

The regression of Yj on F̂ c yields the common factor loadings

Λ̂cj = Y ′j F̂
c
(
F̂ c′F̂ c

)−1
=

1

T
Y ′j F̂

c.

The matrix Ξj is defined as Ξj = Yj − F̂ cΛ̂c′j . Given Ξj , we can now apply the method of principal

components to obtain F̂ sj =
(
f̂sj1 . . . f̂sjT

)′
, composed of

√
T times the eigenvectors corresponding

to the ksj largest eigenvalues of of ΞjΞ
′
j/TNj (arranged in decreasing order), where the normalization

F̂ s′
j F̂

s
j

T = Iksj is used.

2.4 The test statistic and its asymptotic distribution

To test H0, we rely on the statistic

ξ̂ (kc)− kc =

kc∑
l=1

ρ̂l − kc.

1For simplicity, we focus on R̂ here. Our results also apply to a test statistic based on the alternative estimator R̂∗

defined in AGGR(2019) (this is the sample analogue of Ŕ in our notation).
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Our goal is to propose a bootstrap test based on the bootstrap analogue of ξ̂ (kc)−kc, say ξ̂∗ (kc)−kc.
In particular, we focus on obtaining a valid bootstrap p-value p∗ ≡ P ∗

(
ξ̂∗ (kc) ≤ ξ̂ (kc)

)
.2

To understand the properties that a bootstrap test should have in order to be asymptotically valid,

we first review the large sample properties of this test statistic, as studied by AGGR(2019). In the

following, we let N ≡ min (N1, N2) = N2 (without loss of generality) and define µN =
√
N2/N1. Since

N = N2 ≤ N1, µN ≤ 1. We assume that µN → µ ∈ [0, 1]. When N1 = N2 = N , µN = µ = 1.

Appendix A contains a set of assumptions under which we derive the asymptotic distribution of

ξ̂ (kc). Compared to AGGR(2019), we impose a stricter rate condition on N relatively to T . In

particular, while our Assumption 1 maintains AGGR(2019)’s assumption that
√
T/N → 0, we require

that N/T 3/2 → 0 as opposed to N/T 5/2 → 0. The main reason why we adopt a stricter rate condition

is that it greatly simplifies both the asymptotic and the bootstrap theory. 3 In addition, we generalize

standard assumptions in the literature on factor models (see e.g., Bai (2003), Bai and Ng (2006) and

Gonçalves and Perron (2014), henceforth GP(2014)) to the group factor context of interest here. Our

assumptions suggest natural bootstrap high level conditions (which we provide in Appendix B) under

which the bootstrap asymptotic distribution can be derived. Since some of these bootstrap conditions

have already been verified in the previous literature, we can rely on existing results for proving our

bootstrap theory. Instead, AGGR(2019)’s assumptions are not easily adapted to proving our bootstrap

theory.

Next, we characterize the asymptotic distribution of ξ̂ (kc) under Assumptions 1-6 in Appendix A.

We introduce the following notation. First, we let ujt ≡
(

Λ′jΛj

Nj

)
Λ′jεjt√
Nj

and note that ujt captures the

factors estimation uncertainty for panel j. In particular, as is well known (cf. Bai (2003)), estimation

of fjt by principal components implies that each estimator f̂jt is consistent for Hjfjt, a rotated version

of fjt. The rotation matrix is defined as Hj = V−1
j

F̂ ′jFj

T

Λ′jΛj

Nj
, where Vj is a kj × kj diagonal matrix

containing the kj largest eigenvalues of YjY
′
j /NjT on the main diagonal, in decreasing order. As shown

by Bai (2003), ujt is the leading term in the asymptotic expansion of
√
Nj

(
f̂jt −Hjfjt

)
. We let u

(c)
jt

denote the kc×1 vector containing the first kc rows of ujt ≡
(

Λ′jΛj

Nj

)
Λ′jεjt√
Nj

and define Ut ≡ µNu(c)
1t −u

(c)
2t .

Finally, we let Σ̃U ≡ T−1
∑T

t=1E (UtU ′t) and Σ̃cc ≡ T−1
∑T

t=1E (f ct f
c′
t ).

Theorem 2.1 Suppose Assumptions 1-6 hold and the null hypothesis is true so that fjt =
(
f c′t , f

s′
jt

)′
2Although we denote the bootstrap p-value by p∗, we should note it is not random with respect to the bootstrap

measure P ∗. A similar notation is used below to denote the bootstrap bias B∗ and bootstrap variance Ω∗U of the
bootstrap test statistic ξ̂∗ (kc). This choice of notation allows us to differentiate bootstrap population quantities from
other potential estimators that do not rely on the bootstrap.

3Under our Assumption 1, the asymptotic expansions of the test statistic (and of its bootstrap analogue) used to derive

the limiting distributions need to have remainders of order Op

(
δ−4
NT

)
, with δNT ≡ min

(√
N,
√
T
)

, whereas AGGR(2019)

need to obtain expansions up to order Op

(
δ−6
NT

)
.
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for j = 1, 2. It follows that

ξ̂ (kc)− kc +
1

2N
tr
(

Σ̃−1
cc Σ̃U

)
︸ ︷︷ ︸

≡B

= − 1

2N
√
T

1√
T

T∑
t=1

(
U ′tUt − E

(
U ′tUt

))︸ ︷︷ ︸
≡ZN,t

+Op
(
δ−4
NT

)
, (2)

implying that

N
√
TΩ
−1/2
U

(
ξ̂ (kc)− kc +

1

2N
B
)
→d N (0, 1) . (3)

Theorem 2.1 corresponds to Theorem 1 in AGGR(2019) under our Assumptions 1-6. For complete-

ness, we provide a proof of this result in Appendix A. As in AGGR(2019), we obtain an asymptotic

expansion of R̂ around R̃ ≡ Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21, where Ṽjk ≡ T−1

∑T
t=1 fjtf

′
kt. We then use the fact that

under the null hypothesis, fjt and fkt share a set of common factors f ct (i.e. fjt =
(
f c′t , f

s′
jt

)′
for

j = 1, 2), implying that the kc largest eigenvalues of R̃ are all equal to 1. This explains why ξ̂ (kc) is

centered around kc under the null. However, the asymptotic distribution of ξ̂ (kc) depends on the con-

tribution of the factors estimation uncertainty to V̂jk ≡ T−1
∑T

t=1 f̂jtf̂
′
kt, which involves products of f̂jt

and f̂kt. Using Bai (2003)’s identity for the factor estimation error f̂jt−Hjfjt, we rely on Lemma A.2

in Appendix A (which gives an asymptotic expansion of T−1
∑T

t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′
up to

order Op
(
δ−4
NT

)
) to obtain the asymptotic distribution in Theorem 2.1.4

Under our assumptions, the leading term of the asymptotic expansion of ξ̂ (kc)− kc in (2) is given

by 1
2NB, where B ≡ tr

(
Σ̃−1
cc Σ̃U

)
. Since B = Op (1) under our assumptions, 1

2NB is of order Op
(
N−1

)
.

The asymptotic Gaussianity of the test statistic is driven by the first term on the right hand side of

(2), which we can rewrite as − 1
N
√
T

1
2
√
T

∑T
t=1ZN,t, where ZN,t ≡ U ′tUt−E (U ′tUt). Under Assumption

6, ZN,t satisfies a central limit theorem, i.e. we assume5 that 1
2
√
T

∑T
t=1ZN,t →d N (0,ΩU ). Hence,

N
√
TΩ−1
U

(
ξ̂ (kc)− kc + 1

2N tr
(

Σ̃−1
cc Σ̃U

))
is asymptotically distributed as N (0, 1), as stated in (3).

Note that in deriving this result we have used the fact that
√
T/N → 0 and N/T 3/2 → 0 to show that

the remainder is N
√
TOp

(
δ−4
NT

)
= op (1).

Theorem 2.1 illustrates two crucial features of the asymptotic properties of the test statistic ξ̂ (kc)

under the null. First, the test converges at a non-standard rate given by N
√
T . Second, the statistic

ξ̂ (kc) is not centered at kc even under the null. There is an asymptotic bias term of order Op
(
N−1

)
given by B/2N . When multiplied by N

√
T , this term is of order Op

(√
T
)

. Thus, the bias is diverging

but at a slower rate than the convergence rate N
√
T .

The distributional result (3) is infeasible since we do not observe the asymptotic bias B nor the

asymptotic covariance matrix ΩU . To obtain a feasible test statistic, we need consistent estimators of

B and ΩU . In particular, suppose that B̂ and Ω̂U denote such estimators. Then, a feasible test statistic

4In contrast, AGGR(2019) rely on an asymptotic expansion up to order Op

(
δ−6
NT

)
because they require N/T 5/2 → 0

rather than N/T 3/2 → 0 (see their Proposition 3).
5AGGR(2019) provide conditions under which this high level condition holds. See in particular their Assumptions

A.5 and A.6, which are used to show that ZN,t is a Near Epoch Dependent (NED) process. Since our contribution is
proving the bootstrap validity in this context, we do not provide these more primitive conditions. They are not required
to prove our bootstrap theory.
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is

ξ̃ (kc) ≡ N
√
T Ω̂
−1/2
U

(
ξ̂ (kc)− kc +

1

2N
B̂
)
.

Two crucial conditions for showing that ξ̃ (kc) →d N (0, 1) are (i)
√
T
(
B̂ − B

)
= op (1) and (ii)

Ω̂U − ΩU = op (1). Under these conditions, we can use a standard normal critical value to test H0

against H1. Since under H1, ξ̂ (kc)−kc is large and negative, the decision rule is to reject H0 whenever

ξ̃ (kc) < zα, where zα is the α-quantile of a N (0, 1) distribution. This is the approach followed by

AGGR(2019).

As it turns out, estimating B and ΩU is a difficult task when we allow for general time series and

cross-sectional dependence in the idiosyncratic errors εjt. In particular, we can show that B depends

on the cross-sectional dependence of ε1t and ε2t (but not on their serial dependence) whereas ΩU

depends on both forms of dependence.

To see this, assume that kc = 1 (and ksj = 0 for j = 1, 2), in which case B = Σ̃−1
cc Σ̃U . Assume also

that N = N2 = N1, which implies that µN = 1. When the idiosyncratic errors are independent across

the two groups, we can write

Σ̃U ≡ T−1
T∑
t=1

E (u1t − u2t)
2 = T−1

T∑
t=1

[E
(
u2

1t

)
+ E

(
u2

2t

)
].

For each group j, E
(
u2
jt

)
captures the factor estimation uncertainty in f̂jt and is given by E

(
u2
jt

)
=

(N−1Λ′jΛj)
−2Γj,t, where Γj,t ≡ V ar(N−1/2

∑N
i=1 λj,iεj,it). It follows that

Σ̃U = (N−1Λ′1Λ1)−2Γ1 + (N−1Λ′2Λ2)−2Γ2,

where Γj ≡ T−1
∑T

t=1 Γj,t. This shows that B = Σ̃−1
cc Σ̃U depends on Γ1 and Γ2, the time averages

of the variances of the cross-sectional averages of λj,iεj,it for j = 1, 2. Hence, B depends on the

cross-sectional dependence of each group’s idiosyncratic errors, but it does not depend on their serial

dependence.

To see that ΩU depends on both serial and cross-sectional dependence in εj,it, note that ΩU ≡
V ar

(
1
2T
−1/2

∑T
t=1ZN,t

)
is the long run variance of ZN,t ≡ (u1t − u2t)

2 − E (u1t − u2t)
2, whose form

depends on the potential serial dependence of εj,it. It also depends on the cross-sectional dependence

because ZN,t is a (quadratic) function of ujt, which depends on the cross-sectional averages of εj,it.

Thus, we conclude that ΩU is a complicated function of the serial and cross-sectional dependence in

the idiosyncratic error terms.

For these reasons, in order to obtain a feasible test statistic, AGGR(2019) assume that each sub-

panel follows a strict factor model. Under this assumption (including the assumption of conditional

homoskedasticity in the idiosyncratic errors), the form of B and ΩU simplifies considerably. Their

Theorem 2 provides consistent estimators of these quantities, allowing for the construction of a feasible

test statistic. However, even under these restrictive assumptions, our simulations (to be discussed later)
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show important level distortions.

This provides the main motivation for using the bootstrap as an alternative method of inference.

Our main goal is to propose a simple bootstrap test that avoids the need to estimate B and ΩU

explicitly and outperforms the asymptotic theory-based test of AGGR(2019).

3 A general bootstrap scheme

3.1 The bootstrap data generating process and the bootstrap statistics

Let ξ̂∗ (kc) denote the bootstrap analogue of ξ̂ (kc). Our goal is to propose a bootstrap test that rejects

H0 whenever p∗ ≤ α, where α is the significance level of the test and p∗ is the bootstrap p-value defined

as

p∗ ≡ P ∗
(
N
√
T
(
ξ̂∗ (kc)− kc

)
≤ N
√
T
(
ξ̂ (kc)− kc

))
.

The goal of this section is to propose asymptotically valid bootstrap methods. A crucial condition

for bootstrap validity is that the bootstrap p-value is asymptotically distributed as U[0,1], a uniform

random variable on [0, 1], when H0 holds. Under H1, the bootstrap p-value should converge to zero in

probability to ensure that the bootstrap test has power. We propose a general residual-based bootstrap

scheme that resamples the residuals from the two sub-panels in order to create the bootstrap data on

y∗1t and y∗2t. We highlight the crucial conditions that the resampled idiosyncratic errors ε∗1t and ε∗2t

need to verify in order to produce an asymptotically valid bootstrap test.

We adapt the general residual-based bootstrap method of GP(2014) to the group panel factor

model. Specifically, for j = 1, 2, let
{
ε∗jt : t = 1, . . . , Nj

}
denote a resampled version of

{
ε̃jt = yjt − Λ̂cj f̂

c
t − Λ̂sj f̂

s
jt

}
.

The bootstrap data generating process (DGP) is

[
y∗1t
y∗2t

]
=

[
Λ̂c1 Λ̂s1 0

Λ̂c2 0 Λ̂s2

] f̂ ct

f̂s1t
f̂s2t

+

[
ε∗1t
ε∗2t

]
, (4)

or, equivalently, for j = 1, 2, we let Y ∗j = F̃jΛ̃
′
j + ε∗j , where F̃j = [f̃j1, . . . , f̃jT ]′ is T × kj and

Λ̃j = (λ̃j,1, · · · , λ̃j,Nj )
′ is Nj × kj . An important feature of (4) is that it imposes the null hypothesis

of kc common factors between the two panels since the conditional mean of y∗jt relies on the restricted

estimated factors f̃jt =
(
f̂ c′t , f̂

s′
jt

)′
for each j = 1, 2. This mimics the fact that yjt depends on

fjt =
(
f c′t , f

s′
jt

)′
under the null hypothesis. Similarly, ε∗jt are a resampled version of the restricted

residuals ε̃jt. Although other bootstrap schemes that do not impose the null hypothesis could be

considered6, we focus on the null restricted bootstrap DGP in (4) for two main reasons. First, the

fact that we impose the null hypothesis implies that the factors underlying the bootstrap DGP satisfy

the normalization conditions imposed on the group factor model (see Assumption 2(a)). In particular,

6For example, we could use the principal components estimators f̂jt and Λ̂j when generating y∗jt. To distinguish these

estimators from their restricted versions, we denote the latter by f̃jt and Λ̃j .
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by construction f̂ ct is orthogonal in-sample to f̂sjt for both j = 1, 2 when we use Definition 2 of

AGGR(2019), and T−1
∑T

t=1 f̂
c
t f̂

c′
t = Ikc and T−1

∑T
t=1 f̂

s
jtf̂

s′
jt = Ikj for both j = 1, 2. These properties

are crucial in showing the asymptotic Gaussianity of the bootstrap test statistic. Second, imposing the

null hypothesis in the bootstrap DGP when doing hypothesis testing has been shown to be important

to minimize the probability of type I error (see e.g., Davidson and MacKinnon (1999)).

Estimation in the bootstrap world proceeds as in the original sample. First, we extract the largest

kj principal components for each group j, with j = 1, 2, by applying the method of principal com-

ponents to each sub-panel. In particular, the T × kj matrix F̂ ∗j =
(
f̂∗j1, . . . , f̂∗jT

)′
contains

the estimated factors for each bootstrap sample generated from Y ∗j = F̃jΛ̃
′
j + ε∗j . The matrix F̂ ∗j

collects the eigenvectors corresponding to the kj largest eigenvalues of of Y ∗j Y
∗′
j /TNj (arranged in

decreasing order and multiplied by
√
T ), where we impose that

F̂ ∗′j F̂ ∗j
T = Ikj . We then compute

R̂∗ = V̂ ∗−1
11 V̂ ∗12V̂

∗−1
22 V̂ ∗21, where V̂ ∗jk = F̂ ∗′j F̂

∗
k /T = T−1

∑T
t=1 f̂

∗
jtf̂
∗′
kt. The bootstrap test statistic is

ξ̂∗ (kc) =
∑kc

l=1 ρ̂
∗
l = tr

(
Λ̂∗1/2

)
, where Λ̂∗ = diag

(
ρ̂∗2l : l = 1, . . . , kc

)
is a kc × kc diagonal ma-

trix containing the kc largest eigenvalues of R̂∗ obtained from the eigenvalue-eigenvector problem

R̂∗Ŵ ∗ = Ŵ ∗Λ̂∗, where Ŵ ∗ is the k1 × kc matrix eigenvector matrix.

As in the original sample, estimation by principal components using the bootstrap data Y ∗j implies

that each estimator f̂∗jt is consistent for H∗j f̃jt, a rotated version of f̃jt. The bootstrap rotation matrix

is defined as H∗j = V∗−1
j

F̂ ∗′j F̃j

T

Λ̃′jΛ̃j

Nj
, where V∗j is a kj × kj diagonal matrix containing the kj largest

eigenvalues of Y ∗j Y
∗′
j /NjT on the main diagonal, in decreasing order. Contrary to Hj , H

∗
j is observed

and could be used for inference on the factors as in Gonçalves and Perron (2014). Here, the bootstrap

test statistic ξ̂∗ (kc) is invariant to H∗j , but it shows up in the bootstrap theory. The bootstrap p-value

p∗ is based on N
√
T
(
ξ̂∗ (kc)− kc

)
, where ξ̂∗ (kc) is centered around kc because we have imposed the

null hypothesis in the bootstrap DGP in (4).

Next, we characterize the bootstrap distribution of ξ̂∗ (kc). Following the proof of Theorem 2.1, we

expand R̂∗ around R̃∗ ≡ Ṽ ∗−1
11 Ṽ ∗12Ṽ

∗−1
22 Ṽ ∗21, where Ṽ ∗jk ≡ T−1

∑T
t=1 f̃jtf̃

′
kt is the bootstrap analogue of

Ṽjk ≡ T−1
∑T

t=1 fjtf
′
kt.

7 Given (4), f̃jt and f̃kt share a set of common factors f̂ ct (i.e. f̃jt =
(
f̂ c′t , f̂

s′
jt

)′
for j = 1, 2), implying that the kc largest eigenvalues of R̃∗ are all equal to 1 and ξ̂∗ (kc) is centered

around kc. Note that this holds by construction, independently of whether the null hypothesis H0

is true or not. As argued for the original statistic, the bootstrap distribution of ξ̂∗ (kc) is driven

by the contribution of the factors estimation uncertainty (as measured by f̂∗jt − H∗j f̃jt) to V̂ ∗jk ≡
T−1

∑T
t=1 f̂

∗
jtf̂
′∗
kt. In particular, following the proof of Theorem 2.1, the asymptotic distribution of

ξ̂∗ (kc) is based on an asymptotic expansion of T−1
∑T

t=1

(
f̂∗jt −H∗j f̃jt

)(
f̂∗kt −H∗k f̂kt

)′
up to order

Op∗
(
δ−4
NT

)
. This crucial result is given in Lemma B.2 in Appendix B. It relies on Conditions A*, B*

and C*, which are the bootstrap analogues of Assumptions 3, 4 and 5. We call these bootstrap high

level conditions because they apply to any bootstrap method that is used to generate the bootstrap

7Although Ṽ ∗jk is defined as a function of f̃kt and does not depend on resampled data, we use this notation to indicate

that it is the bootstrap analogue of Ṽjk.
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draws ε∗jt. We will verify these conditions for the wild bootstrap in the next section.

The following result follows under Conditions A*-C*. We let U∗t ≡ µNu
(c)∗
1t − u

(c)∗
2t , where u

(c)∗
jt de-

notes the first kc rows of u∗jt ≡
(
N−1
j Λ̃′jΛ̃j

)−1
N
−1/2
j

∑Nj

i=1 λ̃j,iε
∗
j,it. Similarly, we let Σ̃∗U ≡ T−1

∑T
t=1E

∗ (U∗t U∗′t ),

which is the bootstrap analogue of Σ̃U ≡ T−1
∑T

t=1E (UtU ′t).

Lemma 3.1 Suppose that Conditions A*, B*, and C* hold. It follows that

ξ̂∗ (kc)− kc +
1

2N
tr
(

Σ̃∗U

)
︸ ︷︷ ︸
≡B∗

= − 1

2N
√
T

1√
T

T∑
t=1

(
U∗′t U∗t − E∗

(
U∗′t U∗t

))︸ ︷︷ ︸
≡Z∗N,t

+Op∗
(
δ−4
NT

)
. (5)

Lemma 3.1 gives the asymptotic expansion of ξ̂∗ (kc) and is the bootstrap analogue of (2) in

Theorem 2.1. The leading term in the expansion of ξ̂∗(kc) − kc in (5) is given by 1
2NB

∗, where

B∗ ≡ tr
(

Σ̃∗U

)
is the bootstrap analogue of B ≡ tr

(
Σ̃−1
cc Σ̃U

)
. Note that in the bootstrap world,

Σ̃∗cc ≡ T−1
∑T

t=1 f̂
c
t f̂

c′
t = Ikc , which explains why Σ̃∗−1

cc is omitted from the definition of B∗. Under our

bootstrap high level conditions, 1
2NB

∗ is of order Op∗
(
N−1

)
.

To show the asymptotic validity of the bootstrap test, we impose the following additional bootstrap

high level conditions. We define Z∗N,t ≡ U∗′t U∗t − E∗ (U∗′t U∗t ), and let Ω∗U ≡ V ar∗
(

1
2
√
T

∑T
t=1Z∗N,t

)
.

Condition D*
√
T (B∗ − B)→p 0.

Condition E* Ω
∗−1/2
U

1
2
√
T

∑T
t=1Z∗N,t

d∗→p N (0, 1), where Ω∗U ≡ V ar∗
(

1
2
√
T

∑T
t=1Z∗N,t

)
is such that

Ω∗U − ΩU →p 0.

Theorem 3.1 Assume Assumptions 1-6 hold and H0 is true. Then, any bootstrap scheme that verifies

Conditions A*-E* is such that

N
√
TΩ
−1/2
U

(
ξ̂∗ (kc)− kc +

1

2N
B
)

d∗→p N (0, 1) ,

which implies that p∗
d→ U[0,1].

Condition D* requires the bootstrap bias B∗ to mimic the bias term B. In particular, B∗ needs

to be a
√
T -convergent estimator of B. Having B∗ − B = op (1) does not suffice. The main reason

for the faster rate of convergence requirement is that the asymptotic bias term (2N)−1B is of order

Op
(
N−1

)
and since the convergence rate is N

√
T , this induces a shift of the center of the distribution

of order Op

(√
T
)

. So, contrary to more standard settings where the asymptotic bias is of order O (1),

here the asymptotic bias diverges. However, any
√
T -consistent estimator of B can be used to recenter

ξ̂ (kc)−kc and yield a random variable whose limiting distribution is N (0,ΩU ). Condition D* requires

that the bootstrap bias B∗ has this property. Condition E* requires that the bootstrap array Z∗N,t
satisfies a central limit theorem in the bootstrap world with an asymptotic variance-covariance matrix

Ω∗U that converges in probability to ΩU . This condition is the bootstrap analogue of Assumption 6-(b)

in Appendix A.
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We discuss a few implications of our bootstrap high level conditions. The first one is that for the

bootstrap to mimic the asymptotic bias term B (as implied by Condition D*) we need to generate ε∗jt

in a way that preserves the cross-sectional dependence of εjt. Serial dependence in εjt is asymptotically

irrelevant for this term. The reason for this is that B depends only on the cross-sectional dependence

but not on the serial dependence of εjt, as we explained in the previous section.

The second implication is that in order for the bootstrap to replicate the covariance ΩU (as required

by Condition E*) we need to design a bootstrap method that generates ε∗jt with serial dependence (in

addition to cross-sectional dependence). This can be seen by noting that ΩU is the long run variance

of 1
2
√
T

∑T
t=1ZN,t, which depends on both the serial and the cross-sectional dependence properties of

{εjt}.
The overall conclusion is that the implementation of the bootstrap depends on the serial and cross-

sectional dependence assumptions we make on the idiosyncratic errors of each sub-panel. Different

assumptions will lead to different bootstrap algorithms. Theorem 3.1 is useful because it gives a set

of high-level conditions that can be used to prove the asymptotic validity of the bootstrap for any

bootstrap scheme used to obtain ε∗jt.

To end this section, we discuss the asymptotic power of our bootstrap test. Although Conditions

A*-E* suffice to show that p∗
p−→ 0 under H1, a weaker set of assumptions suffices. In particular,

the following high level condition is sufficient to ensure that any bootstrap test based on ξ̂∗ (kc) is

consistent.

Condition F* 1
2
√
T

∑T
t=1Z∗N,t = Op (1) and B∗ = Op

(
N1−ε), where ε is some positive number.

Proposition 3.1 Under Assumptions 1-6, any bootstrap method that verifies Conditions A*-C* and

F* satisfies p∗
p−→ 0 under H1.

Since we reject H0 if p∗ ≤ α, Proposition 3.1 ensures that P (p∗ ≤ α)→ 1 when H1 is true.

4 Specific bootstrap schemes

4.1 The wild bootstrap method

Here, we discuss a wild bootstrap method and show that it verifies Conditions A*-F* under a set of

assumptions similar to those of Theorem 2 in AGGR(2019). Algorithm 1 below contains a description

of this method.
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Algorithm 1 : Wild Bootstrap

1. For t = 1, . . . , T , and j = 1, 2, let
y∗jt = Λ̃j f̃jt + ε∗jt,

where f̃jt = (f̂ c′t , f̂
s′
jt)
′ and ε∗jt =

(
ε∗j,1t, . . . , ε

∗
j,Njt

)′
is such that

ε∗j,it = ε̃j,itηj,it,

and ηj,it are i.i.d. N (0, 1) across (j, i, t).

2. For j = 1, 2, estimate the bootstrap factors F̂ ∗j by extracting the first kj principal components
from y∗jt, and set

V̂ ∗jl =
1

T
F̂ ∗′j F̂

∗
l , j, l = 1, 2,

and
R̂∗ = V̂ ∗−1

11 V̂ ∗12V̂
∗−1

22 V̂ ∗21.

3. Compute the kc largest eigenvalues of R̂∗ and denote these by ρ̂∗2l , l = 1, . . . , kc.

4. Compute the bootstrap test statistic ξ̂∗ (kc) =
∑kc

l=1 ρ̂
∗
l .

5. Repeat steps 1-4 M times and then compute the bootstrap p-value as

p∗ =
1

M

M∑
b=1

1
(
ξ̂∗(b) (kc) ≤ ξ̂ (kc)

)
,

where ξ̂∗(b) (kc) is the value of the bootstrap test for replication b = 1, . . . ,M .

6. Reject the null hypothesis of kc common factors at level α if p∗ ≤ α.

To prove the asymptotic validity of the wild bootstrap p-value, we strengthen the primitive as-

sumptions given in Appendix A as follows.

Assumption WB1 For j = 1, 2, {fjt} and {εj,it} are mutually independent such that E‖fjt‖32 ≤
M <∞ and E|εj,it|32 ≤M <∞ for all (i, t).

Assumption WB2 (a) Cov(εj,it, εk,ls) = 0 if j 6= k or i 6= l or t 6= s, and (b) E(ε2
j,it) = γj,ii > 0.

Assumption WB3 For each j = 1, 2,

(a) 1√
T

∑T
t=1 ε

2
j,itε

2
j,kt − E(ε2

j,itε
2
j,kt) = Op(1) for any i, k.

(b) maxi≤Nj

∥∥∥ 1
T

∑T
t=1 fjtεj,it

∥∥∥ = Op

(√
logNj

T

)
.

(c) E
∥∥∥ 1
Nj

Λ′jεjt

∥∥∥2
≤M .
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Assumption WB1 strengthens the moment conditions in Assumption 2 and Assumption 3-(a). A

larger number of moments of fjt and εj,it is required here than in GP (2014) (who require the existence

of 12 moments rather than 32). As explained above, our bootstrap test statistic ξ̂∗ (kc) involves

products and cross products of bootstrap estimated factors from each sub-panel. The derivation of

the bootstrap asymptotic distribution of ξ̂∗ (kc) relies on Lemma B.2 which obtains an asymptotic

expansion of T−1
∑T

t=1

(
f̂∗jt −H∗j f̃jt

)(
f̂∗kt −H∗k f̂kt

)′
up to order Op∗

(
δ−4
NT

)
. This requires not only

the verification of Conditions A* and B* from GP (2014) (who obtain an asymptotic expansion of

T−1
∑T

t=1

(
f̂∗jt −H∗j f̃jt

)(
f̂∗kt −H∗k f̂kt

)′
up to order Op∗

(
δ−2
NT

)
), but also of Condition C*, which is new

to this paper. The large number of moments is used in verifying this condition. In particular, we rely on

repeated applications of Cauchy-Schwarz’s inequality, and bound sums such as 1
NjT

∑Nj

i=1

∑T
t=1 |ε̃j,it|p

for p ≤ 16, which requires the existence of 2p moments of fjt and εj,it (see Lemma C.1).

Assumption WB2 rules out cross-sectional and serial correlation in the idiosyncratic errors of each

sub-panel as well as correlation among εjt and εkt for j 6= k. These assumptions are similar to the

assumptions used by AGGR(2019) to justify their feasible test statistic (see their Theorem 2). For

simplicity, we assume the external random variable ηj,it to be Gaussian, but the result generalizes

to any i.i.d. draw that is mean zero and variance one with finite eight moments and a symmetric

distribution.

Theorem 4.1 Assume that Assumptions 1-6 strengthened by Assumptions WB1, WB2, and WB3

hold. Then, if Algorithm 1 is used to generate ε∗jt for j = 1, 2, the conclusions of Theorem 3.1 and

Proposition 3.1 apply.

Theorem 4.1 justifies theoretically using the wild bootstrap p-value p∗ to test the null hypothesis

of kc common factors. Although Assumption WB2 rules out dependence in εjt in both dimensions,

as in Theorem 2 of AGGR(2019), this bootstrap test does not require an explicit bias correction

nor a variance estimator. We show in Section 5 that the feasible test statistic AGGR(2019) can be

oversized even under these restrictive assumptions. The wild bootstrap essentially eliminates these

level distortions.

4.2 An extension: AR-CSD bootstrap method

Here, we discuss an extension of the wild bootstrap that allows for cross-sectional and serial dependence

in the idiosyncratic error terms of each sub-panel. In particular, we assume that for each j = 1, 2, and

i = 1, . . . , Nj , the idiosyncratic errors εj,it follow an AR(p) model (autoregressive model of order p):

εj,it = aji (L) εj,i,t−1 + vj,it, (6)

where aji (L) = aji,1 + aji,2L + . . . + aji,p−1L
p−1. If we collect all observations i for panel j, we can

write this as εjt = Aj (L) εj,t−1 + vjt, where Aj (L) = Aj,1 + Aj,2L + . . . + Aj,p−1L
p−1 and Aj,k are

Nj×Nj diagonal matrices with coefficients aji,k along the main diagonal. Since Nj is large, consistent
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estimation of Aj,k is not feasible unless we impose some form of sparsity. Assuming that each series

εj,it is an autoregressive process with possibly heterogeneous coefficients is a restrictive form of sparsity

which allows the use of OLS8. In addition, we assume that

vjt ∼ i.i.d. (0,Σv,j) , Σv,j = (γj,il)i,l=1,...,Nj
.

The fact that we allow for a possibly non-diagonal covariance matrix Σv,j means that we allow for

cross-sectional dependence in the innovations vjt.

Our proposal is to create bootstrap observations ε∗jt using a residual-based bootstrap procedure that

resamples the residuals of the AR model (6). Resampling the vector of the AR(p) residuals ṽjt allowing

for unrestricted cross-sectional dependence is complicated due to the fact that the covariance matrix

Σv,j is high dimensional. In particular, i.i.d. resampling of ṽj,it is not valid, as shown by Gonçalves

and Perron (2020) in the context of factor augmented regression models. Our bootstrap algorithm

(described in Algorithm 2) relies on the cross-sectional dependent (CSD) bootstrap of Gonçalves and

Perron (2020). In the following, we let Σ̃v,j denote any consistent estimator of Σv,j under the spectral

norm. Examples include the thresholding estimator of Bickel and Levina (2008a) and the banding

estimator of Bickel and Levina (2008b).

Algorithm 2 : AR-CSD Bootstrap

1. For t = 1, . . . , T , and j = 1, 2, let
y∗jt = Λ̃j f̃jt + ε∗jt,

where f̃jt = (f̂ c′t , f̂
s′
jt)
′ and ε∗jt =

(
ε∗j,1t, . . . , ε

∗
j,Njt

)′
is such that

ε∗j,it = ãji (L) ε∗j,i,t−1 + v∗j,it, for t = 1, . . . , T

with ε∗j,i0 = 0 for i = 1, . . . , Nj and where v∗j,it is i-th element of v∗jt obtained as

v∗jt = Σ̃
1/2
v,j ηjt, where ηjt is i.i.d.N

(
0, INj

)
over t.

2. Repeat steps 2 through 6 of Algorithm 1.

The wild bootstrap algorithm (Algorithm 1) is a special case of Algorithm 2 when we set ãji (L) = 0

for all i and Σ̃v,j = diag
(
ε̃2
j,it

)
. Another special case is the cross-sectional dependent (CSD) bootstrap

of Gonçalves and Perron (2020), which sets ãji (L) = 0 and lets Σ̃v,j denote the thresholding estimator

based on the sample covariances of ε̃j,it. Finally, a generalization of Algorithm 2 is the sieve bootstrap

proposed by Koh (2022) in the context of MIDAS factor models. Although it would be interesting to

extend the sieve bootstrap to our testing problem, we focus on a class of finite order AR models here

8We could allow for richer dynamics by assuming a sparse VAR model for the idiosyncratic error vector εjt, as in
Kock and Callot (2015), Krampe and Paparoditis (2021), and Krampe and Margaritella (2021). Under sparsity, we
would estimate Aj (L) by a regularized OLS estimator such as LASSO rather than OLS. The remaining steps of our
bootstrap method would remain the same.
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in order to simplify the analysis.

The proof of the asymptotic validity of Algorithm 2 follows from Theorem 3.1 and Proposition

3.1 by verifying Conditions A* - F*. Since ε∗j,it is both serially and cross-sectionally correlated, the

verification of these bootstrap high-level conditions is much more involved than for the wild bootstrap

and beyond the scope of this paper. However, we evaluate by simulation the performance of both

Algorithms 1 and 2 in the next section.

5 Simulations

In this section, we compare the performance of the bootstrap methods discussed in the previous

sections. Our data generating process (DGP) is a simple model with one factor for each group:[
y1t

y2t

]
=

[
Λ1 0

0 Λ2

][
f1t

f2t

]
+

[
ε1t

ε2t

]
, (7)

where yjt and εjt are Nj × 1 for t = 1, . . . , T . As opposed to Andreou et al. (2019), we assume that

both groups have the same frequency.

For level experiments, we let f1t = f2t = f ct . As in Gonçalves and Perron (2014), this common

factor is generated independently over time from a standard normal distribution, f ct ∼ i.i.d.N(0, 1).

For power experiments, each group has a specific factor f1t = fs1t and f2t = fs2t. These two group-

specific factors are also generated independently over time from a bivariate normal with unit variance

and correlation φ = 0.99. In all cases, the factor loadings are drawn independently from a standard

normal distribution, Λj ∼ i.i.d.N(0, 1), j = 1, 2.

The idiosyncratic error terms in the model, εt = (ε′1t, ε
′
2t)
′, are such that

εt = Aεεt−1 + vt

where Aε is a block-diagonal matrix

Aε =

[
aε,1IN1 0(N1×N2)

0(N2×N1) aε,2IN2

]
and aε,j is the AR(1) coefficient in group j (we assume that all individual series in each group share

the same autoregressive coefficient). The innovations in the idiosyncratic error terms, vt = (v′1t, v
′
2t)
′,

are such that:

v1t ∼ N(0, (1− a2
ε,1)Σv,1), v2t ∼ N(0, (1− a2

ε,2)Σv,2),

where Σv,1 is the first diagonal block and Σv,2 is the second diagonal block of

Σv =

[
{β|i−j|}i,j=1,...,N1 0(N1×N2)

0(N2×N1) {β|i−j|}i,j=1,...,N2

]
.

The scalar β induces cross-sectional dependence in each group among the idiosyncratic innovations.
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Table 1: Data generating processes

DGP aε,1 aε,2 β

Design 1 (no serial & no cross-sectional dependence) 0 0 0
Design 2 (only serial dependence) 0.5 0.3 0
Design 3 (only cross-sectional dependence) 0 0 0.2
Design 4 (serial & cross-sectional dependence) 0.5 0.3 0.2

Table 2: Sample sizes in simulation experiment

N1 N2 T

50 50 50
50 50 100
50 50 200

100 100 50
100 100 100
100 100 200

200 200 50
200 200 100
200 200 200

This is similar to the design in Bai and Ng (2006). Note that we assume that Σv is a block diagonal

matrix, so we do not consider dependence between the two groups. In Table 1, we report the parameter

settings we consider.

In Design 1, we assume that there is no serial correlation and no cross-sectional dependence and

that the idiosyncratic errors are homoskedastic. The idiosyncratic error terms in Design 2 are serially

correlated in each group where the AR(1) coefficient in group 1 is larger than the one in group 2. In

the third design, we consider cross-sectional dependence without serial correlation in the idiosyncratic

error term. Finally, in the last design, the idiosyncratic innovation terms are both serially and cross-

sectionally correlated.

We consider sample sizes N1 = N2 = N between 50 and 200 and T between 50 and 200. We

simulate each design 5000 times, and the bootstrap replication number is set at 399. We use the

bootstrap algorithms proposed in Sections 3 and 4 with four different bootstrap methods: the wild

bootstrap, the AR(1)-CSD bootstrap proposed earlier and two variants: a parametric AR(1) bootstrap

with no cross-sectional dependence and a CSD bootstrap with no serial dependence. The CSD and

AR(1)-CSD bootstraps involve an estimator of the covariance matrix of the idiosyncratic errors. We

rely on the banding estimator of Bickel and Levina (2008b) with the banding parameter k chosen by

their cross-validation procedure. We focus our results on α = 0.05 and report rejection rates for each
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Table 3: Rejection rate of 5% test - level

N = 50 N = 100 N = 200
T = 50 100 200 T = 50 100 200 T = 50 100 200

Design 1
i.i.d.

AGGR 6.5 4.9 3.3 7.4 6.2 5.0 8.3 7.2 6.2
WB 5.3 4.9 4.3 5.8 5.7 5.1 6.7 6.4 5.6

AR (1) 5.1 4.9 4.1 5.9 5.6 5.1 6.7 6.1 5.8
CSD 6.1 5.9 5.6 6.0 5.7 5.6 6.7 6.2 6.0

AR(1)-CSD 7.3 6.7 5.8 7.5 6.8 6.3 8.4 7.3 6.7

Design 2
AR

AGGR 14.3 10.0 7.7 15.2 12.4 9.8 17.7 13.8 10.8
WB 9.8 8.7 8.0 10.4 9.8 8.9 12.5 10.7 9.3

AR (1) 4.9 4.7 4.2 5.9 5.7 4.8 6.9 5.9 5.4
CSD 11.9 12.5 14.7 11.5 11.5 11.4 13.0 11.0 10.1

AR(1)-CSD 6.4 6.2 6.1 7.2 7.0 6.3 7.8 7.1 6.2

Design 3
CSD

AGGR 21.6 18.9 20.5 20.4 17.5 16.9 20.8 16.8 14.2
WB 15.9 16.5 20.3 15.0 14.5 15.8 15.2 13.4 12.6

AR (1) 9.6 11.7 15.0 8.9 9.5 10.7 8.7 8.0 8.4
CSD 7.2 8.2 8.2 8.8 8.7 7.4 10.5 9.4 8.3

AR(1)-CSD 5.8 5.3 5.3 6.3 5.6 4.9 6.9 6.2 5.8

Design 4
AR + CSD

AGGR 21.6 18.9 20.5 20.4 17.5 16.9 20.8 16.8 14.2
WB 15.7 16.6 20.1 15.1 14.7 15.8 15.2 13.8 12.4

AR (1) 9.6 11.6 15.0 8.6 9.4 10.6 8.7 8.2 8.2
CSD 7.5 8.0 8.0 8.9 8.2 7.7 10.5 9.4 8.4

AR(1)-CSD 5.4 5.3 5.1 6.5 5.8 4.9 7.1 6.1 5.7

design, bootstrap method, and sample size.

The simulation results for the level experiments are shown in Table 3. The row labeled “AGGR”

reports results based on the asymptotic standard normal critical values. The other four rows contain

the results for the bootstrap methods: WB for wild bootstrap and AR(1) for parametric AR(1) boot-

strap method, CSD for the cross-sectional bootstrap, and AR-CSD for the bootstrap that combines

the autoregressive and cross-sectional dependent bootstrap.

Under the restrictive Design 1 where the assumptions of Theorem 2 of Andreou et al. (2019) are

satisfied, the asymptotic theory performs reasonably well, although some distortions appear for the

smaller value of T. For the other three designs, we find severe over-rejections for all sample sizes,

as expected given that the statistic is computed assuming away autocorrelation and cross-sectional

dependence.

In all sets of samples and designs, bootstrap methods provide more reliable inference than standard

normal inference. The bootstrap method that performs best is typically the one tailored to the

properties of the DGP. For example, in Design 1, both the wild bootstrap and the AR(1) bootstrap

perform similarly, and they reject the null hypothesis at a rate close to 5%. To illustrate, for N1 =
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N2 = 100 and T = 50, the test rejects in 7.4% of the replications using the standard normal critical

values. The rejection rates for the wild bootstrap and AR(1) bootstrap are 5.8% and 5.9% respectively.

On the other hand, the cross-sectional bootstrap and combined AR(1) and CSD bootstrap reject in

6.0% and 7.5% of the replications. This higher rejection rate is the cost of using a more robust method

than necessary.

As mentioned above, in Designs 2 - 4, the feasible statistic in Andreou et al. (2019) leads to large

level distortions since it is not robust to serial correlation or cross-sectional dependence. Because

there is serial dependence in the idiosyncratic error terms in Design 2, the wild bootstrap and CSD

bootstrap are no longer valid while still improving on the use of the standard normal critical values.

In this case, both the AR(1) and AR(1)-CSD bootstraps are valid and provide similar results with a

slight preference for the simple AR(1) bootstrap. To illustrate, with the same N1 = N2 = 100 and

T = 50 as above, the standard normal critical values lead to a rejection rate of 15.2% for a 5% test.

The (invalid) wild and CSD bootstraps have rejection rates of 10.4% and 11.5% respectively. On the

other hand, the (valid) AR(1) and AR(1)-CSD bootstraps have rejection rates of 5.9% and 7.2%.

In Designs 3 and 4, where we introduce cross-sectional dependence, neither the wild bootstrap nor

the AR(1) bootstrap are valid and they are not performing well, as expected. In the most general design

with both serial and cross-sectional dependence, only the AR(1)-CSD bootstrap provides reliable

results. While the asymptotic theory in the N1 = N2 = 100 and T = 50 case shows a rejection rate

of 20.4%, the AR(1)-CSD bootstrap has a rejection rate of 6.3% compared with 8.8% for the CSD

bootstrap, 8.9% for the AR(1) bootstrap, and 15.0% for the simple wild bootstrap.

Our power results are presented in Table 4. These results must be interpreted with caution given

the large level distortions documented in some cases. For the simple i.i.d. case (Design 1) where all

tests have reasonable rejection rates under the null, we see that the bootstrap entails a small reduction

in power relative to the AGGR test. The largest loss occurs for N1 = N2 = T = 50 where the AGGR

test has a power of 65.2% while the wild bootstrap rejects in 61.5% of the cases. The gap between the

two methods disappears as sample size increases in both dimensions.

It is interesting to note that power increases faster in the cross-sectional than in the time series

dimension. Going from N = 50 to N = 100 for given T has more impact on power than going from

T = 50 to T = 100 for given N. This is consistent with the different rates of convergence of the statistic

in the two dimensions.

Finally, we see that more complex idiosyncratic dependencies lead to a reduction in power for

bootstrap methods that control level. Nevertheless, power approaches one rather quickly.

Overall, our results suggest that except for the simple case with no serial or cross-sectional depen-

dence and large sample sizes, the use of standard normal critical values leads to large level distortions.

On the other hand, a bootstrap method that adapts to the properties of the idiosyncratic terms pro-

vides excellent coverage rates, while a misspecified bootstrap still improves matters noticeably. The

use of more robust bootstrap methods has a small cost in terms of power.
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Table 4: Rejection rate of 5% test - power

N = 50 N = 100 N = 200
T = 50 100 200 T = 50 100 200 T = 50 100 200

Design 1
i.i.d.

AGGR 65.2 83.5 96.4 96.4 99.7 100.0 100.0 100.0 100.0
WB 61.5 83.0 97.2 95.5 99.7 100.0 100.0 100.0 100.0

AR (1) 60.8 83.4 97.4 95.2 99.6 100.0 99.9 100.0 100.0
CSD 58.9 79.6 92.9 94.9 99.6 100.0 100.0 100.0 100.0

AR(1)-CSD 62.0 81.0 93.7 95.6 99.7 100.0 100.0 100.0 100.0

Design 2
AR

AGGR 70.1 84.9 96.0 96.7 99.8 100.0 100.0 100.0 100.0
WB 61.3 82.3 96.0 95.1 99.6 100.0 99.9 100.0 100.0

AR (1) 48.9 74.2 93.3 90.1 99.3 100.0 99.8 100.0 100.0
CSD 61.5 79.9 92.7 94.3 99.5 100.0 99.9 100.0 100.0

AR(1)-CSD 50.0 71.6 87.5 90.3 99.2 100.0 99.9 100.0 100.0

Design 3
CSD

AGGR 68.4 84.3 94.4 96.3 99.6 100.0 100.0 100.0 100.0
WB 64.7 83.9 95.0 95.2 99.5 100.0 100.0 100.0 100.0

AR (1) 63.9 83.4 95.1 95.1 99.5 100.0 100.0 100.0 100.0
CSD 46.1 66.3 83.1 91.7 99.0 99.9 99.9 100.0 100.0

AR(1)-CSD 51.3 69.1 84.6 92.9 99.1 100.0 100.0 100.0 100.0

Design 4
AR + CSD

AGGR 73.3 85.0 94.3 96.9 99.7 100.0 100.0 100.0 100.0
WB 65.4 82.6 94.4 94.9 99.5 100.0 100.0 100.0 100.0

AR (1) 53.5 75.1 91.7 90.5 99.1 100.0 99.9 100.0 100.0
CSD 48.8 66.5 83.8 91.3 99.0 100.0 99.9 100.0 100.0

AR(1)-CSD 40.0 57.2 75.4 85.8 98.0 99.0 99.8 100.0 100.0
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6 Conclusions

In this paper, we have proposed the bootstrap as an inference method on the number of common

factors in two groups of data. We propose and theoretically justify under weak conditions a simple

bootstrap test that avoids the need to estimate the bias and variance of the canonical correlations

explicitly. We have verified these conditions in the case of the wild bootstrap under conditions similar to

those in AGGR(2019). However, other approaches tailored to more general data generating processes

are possible. Our simulation experiment shows that the bootstrap leads to rejection rates closer

to the nominal level in all of the designs we considered compared to the asymptotic framework of

AGGR(2019).
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A Asymptotic theory

This Appendix is organized as follows. In Appendix A.1, we provide a set of primitive assumptions

under which we derive the asymptotic distribution of ξ̂ (kc). Appendix A.2 contains auxiliary lemmas

used to derive this limiting distribution. Appendix A.3 provides a proof of the results in Section 2.4.

When describing our assumptions below, it is convenient to collect the vectors f ct , fs1t and f s2t into a

vector Gt = (f c′t , f
s′
1t, f

s′
2t)
′, whose dimension is kc + ks1 + ks2.

A.1 Primitive assumptions

Assumption 1 We let N,T → ∞ such that
√
T
N → 0, and N

T 3/2 → 0, where N = min (N1, N2) = N2

and µN ≡
√
N2/N1 → µ ∈ [0, 1].

Assumption 2

(a) E (Gt) = 0 and E ‖Gt‖4 ≤ M such that 1
T

∑T
t=1GtG

′
t →p ΣG > 0, where ΣG is a non-random

positive definite matrix defined as

ΣG ≡

Ikc 0 0

0 Iks1 Φ

0 Φ′ Iks2

 .

(b) For each j = 1, 2, the factor loadings matrix Λj ≡ (λj,1, · · · , λj,Nj )
′ is deterministic such that

‖λj,i‖ ≤M and ΣΛ,j ≡ limNj→∞ Λ′jΛj/Nj > 0 has distinct eigenvalues.

Assumption 3 For each j = 1, 2,

(a) E(εj,it) = 0, E(|εj,it|8) ≤M for any i, t.

(b) E(εj,itεj,ls) = σj,il,ts, |σj,il,ts| ≤ σ̄j,il for all (t, s) and |σj,il,ts| ≤ τj,ts for all (i, l) such that

1
Nj

∑Nj

i,l=1 σ̄j,il ≤M , T−1
∑T

t,s=1 τj,ts ≤M , and 1
NjT

∑
t,s,i,l |σj,il,ts| ≤M .

(c) E

∣∣∣∣ 1√
Nj

∑Nj

i=1 (εj,isεj,it − E(εj,isεj,it))

∣∣∣∣4 ≤M for every (t, s).

Assumption 4 For each j = 1, 2,

(a) E
(

1
Nj

∑Nj

i=1 ‖
1√
T

∑T
t=1Gtεj,it‖2

)
≤M , where E(Gtεj,it) = 0 for all (i, t).

(b) For each s, E

∥∥∥∥ 1√
TNj

∑T
t=1

∑Nj

i=1Gt(εj,isεj,it − E(εj,isεj,it))

∥∥∥∥2

≤M .

(c) E

∥∥∥∥ 1√
TNj

∑T
t=1Gtε

′
jtΛj

∥∥∥∥2

≤M .

(d) E

(
1
T

∑T
t=1

∥∥∥∥ 1√
Nj

Λ′jεjt

∥∥∥∥2
)
≤M .
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Assumptions 2-4 are standard in the factor literature. In particular, Assumptions 2-(a) and 2-(b)

impose standard conditions on the factors and factor loadings, respectively. They are identical to

Assumptions A.2 and A.3 of AGGR(2019). Assumption 3 imposes standard time and cross-section

dependence and heteroskedasticity in the idiosyncratic errors of each panel and corresponds to As-

sumption 2 of GP(2014). Finally, Assumption 4 imposes conditions on moments and weak dependence

among {Gt} and {εj,it} . This assumption corresponds to Assumption 3(a)-(d) in GP(2014). Note that

given Assumption 2-(b), which assumes the factor loadings to be deterministic, we can show that As-

sumption 4-(d) is implied by Assumptions 2-(b) and 3-(b). To see this, note that we can write

E

∥∥∥∥∥ 1√
Nj

Λ′jεjt

∥∥∥∥∥
2

=
1

Nj

Nj∑
i=1

Nj∑
l=1

λ′j,iλj,l E (εj,itεj,lt)︸ ︷︷ ︸
≤σ̄j,il by Ass-3(b)

≤ 1

Nj

Nj∑
i=1

Nj∑
l=1

∣∣λ′j,iλj,l∣∣ σ̄j,il ≤M 1

Nj

Nj∑
i=1

Nj∑
l=1

σ̄j,il,

given that Assumption 2-(b) and Cauchy-Schwartz’s inequality imply that we can bound
∣∣∣λ′j,iλj,l∣∣∣ =∣∣∣∑kj

k=1 λj,ikλj,lk

∣∣∣ ≤ (∑kj
k=1 λ

2
j,ik

)1/2 (∑kj
k=1 λ

2
j,lk

)1/2
= ‖λj,i‖ ‖λj,l‖ ≤ M . Assumption 4-(d) then

follows from Assumption 3-(b) which bounds 1
Nj

∑Nj

i=1

∑Nj

l=1 σ̄j,il by M for all t. The reason why we

keep Assumption 4-(d) is that we will give its bootstrap analogue in Appendix B.1. Note also that, as

stated in GP(2014), we can show that Assumptions 4-(a) and (c) are implied by Assumptions 2 and

3 if we assume that the factors and the idiosyncratic errors are mutually independent. Assumption

4-(b) in turn holds if we assume in addition that T−2N−1
j

∑T
s,q=1

∑Nj

i=1 |Cov (εj,itεj,is, εj,itεj,iq)| ≤M ,

which follows if εj,it is i.i.d. and E
(
ε4
j,it

)
≤M .

A key step in deriving the asymptotic distribution of the AGGR(2019) test statistic (and of its

bootstrap analogue) under our Assumption 1 is to obtain an asymptotic expansion of the factors

estimation uncertainty (as characterized by 1
T

∑T
t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′
for j, k ∈ {1, 2} up

to order 9 Op
(
δ−4
NT

)
). See Lemma A.5 in Appendix A.2. As it turns out, Assumptions 1-4 are not

sufficient to ensure this fast rate of convergence. For this reason, we strengthen Assumptions 1-4 as

follows.

Assumption 5

(a) For each t and j = 1, 2,
∑T

s=1 |γj,st| ≤M , where γj,st ≡ E( 1
Nj

∑Nj

i=1 εj,isεj,it) and
∑Nj

l=1 σ̄j,il ≤M .

(b) For any j, k, 1√
T

∑T
s=1 fjs

∑T
t=1 γj,st

ε′ktΛk√
Nk

= Op (1).

(c) For any j, k, 1
T

∑T
s=1

∥∥∥∑T
t=1 γj,st

ε′ktΛk√
Nk

∥∥∥2
= Op (1).

(d) For any j, k, 1√
T

∑T
s=1 fjs

1
T

∑T
t=1

(
1√
N

∑N
i=1 λk,iεk,it(εj,isεj,it − E(εj,isεj,it))

)
= Op(1), whereN =

min(N1, N2).

9This means that it contains terms of order Op

(
δ−2
NT

)
and a remainder of order Op

(
δ−4
NT

)
.
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(e) For any j, k, 1√
T

∑T
s=1 fjs

1√
T

∑T
t=1

1√
NjNk

∑Nj

i1=1

∑Nk
i2 6=i1 λk,i2εk,i2t(εj,i1sεj,i1t − E(εj,i1sεj,i1t)) =

Op(1).

(f) For any j, k, 1
T

∑T
s=1

∥∥∥ 1
T

∑T
t=1

(
1√
N

∑N
i=1 λk,iεk,it(εj,isεj,it − E(εj,isεj,it))

)∥∥∥2
= Op(1), where N =

min(N1, N2).

(g) For any j, k, 1
T

∑T
s=1

∥∥∥∥ 1√
T

∑T
t=1

(
1√
NjNk

∑Nj

i1=1

∑Nk
i2 6=i1 λk,i2εk,i2t(εj,i1sεj,i1t − E(εj,i1sεj,i1t))

)∥∥∥∥2

=

Op(1).

Assumption 5-(a) is a strengthening of Assumption 3-(b) and corresponds to Assumption E.1 of

Bai (2003). A similar assumption has been used by AGGR(2019). See in particular their Assumption

A.7(c) on βj,t. As explained by Bai (2003), this assumption is satisfied when we rule out serial

dependence, implying that γj,st = 0 for s 6= t. In this case, Assumption 5-(a) is equivalent to requiring

that 1
Nj

∑Nj

i=1E
(
ε2
j,it

)
≤M . More generally, this condition holds whenever for each panel j and each

series i, the autocovariance function of {εj,it} is absolutely summable (thus covering all finite order

stationary ARMA models).

To interpret Assumptions 5-(b) and (c), let vkt ≡
Λ′kεkt√
Nk

and mjk,s ≡
∑T

t=1 γj,stvkt. With this nota-

tion, we can rewrite part (b) as 1√
T

∑T
s=1 fjsm

′
jk,s = Op (1) and part (c) as 1

T

∑T
s=1 ‖mjk,s‖2 = Op (1).

The latter condition holds if E ‖mjk,s‖2 ≤M for all j, k, s, which follows if part (a) holds and if we as-

sume that E ‖vkt‖2 ≤M for all k, t. To see this, note that E ‖mjk,s‖2 = E
[(∑T

t=1 γj,stv
′
kt

)(∑T
l=1 γj,slvkl

)]
=∑T

t=1

∑T
l=1 γj,stγj,slE (v′ktvkl), which is bounded by

∑T
t=1

∑T
l=1 |γj,st| |γj,sl|

(
E ‖vkt‖2

)1/2 (
E ‖vkl‖2

)1/2

by Cauchy-Schwarz’s inequality. If E ‖vkt‖2 ≤ M for all k, t, we can use Assumption 5-(a) to verify

Assumption 5-(c). The assumption that E ‖vkt‖2 ≤ M for all k, t is a strengthening of Assumption

4-(d) and both are equivalent if we assume stationarity of {εkt}. Hence, Assumption 5-(c) holds under

general serial and cross-sectional dependence in the idiosyncratic error terms.

A sufficient condition for Assumption 5-(b) is that E
∥∥∥ 1√

T

∑T
s=1 fjsm

′
jk,s

∥∥∥2
≤M. We can show that

this condition is implied by Assumptions 3-(b) and 5-(a) if we assume that {fjs} and {εkt} are mutually

independent. We can verify Assumptions 5-(d) and (e) by showing that 1
T

∑T
s=1

∑T
l=1E(A′jk,lAjk,s) ≤

M and 1
T

∑T
s=1

∑T
l=1E(B′jk,lBjk,s) ≤M , whereAjk,s ≡ 1

T

∑T
t=1

(
1√
N

∑N
i=1 λk,iεk,it(εj,isεj,it − E(εj,isεj,it))

)
and Bjk,s ≡ 1√

T

∑T
t=1

1√
NjNk

∑Nj

i1=1

∑Nk
i2 6=i1 λk,i2εk,i2t(εj,i1sεj,i1t − E(εj,i1sεj,i1t)), which holds for in-

stance if εj,it is i.i.d. with E(ε3
j,it) = 0 and E(ε6

j,it) ≤ M for j = 1, 2. Similarly, we can show that

Assumptions 5-(d) and (e) are verified under similar conditions on εj,it.

Our next assumption is a high level condition that allows us to obtain the asymptotic normal

distribution for the AGGR test statistic.

Assumption 6

(a) Σ̃cc ≡ 1
T

∑T
t=1 f

c
t f

c′
t is such that Σ̃cc − Ikc = Op

(
T−1/2

)
.
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(b) 1
2
√
T

∑T
t=1 (U ′tUt − E (U ′tUt)) →d N (0,ΩU ), where Ut ≡ µNu

(c)
1t − u

(c)
2t and u

(c)
jt is a kc × 1 vector

containing the first kc rows of ujt ≡
(

Λ′jΛj

Nj

)−1 Λ′jεjt√
Nj

.

Assumption 6-(a) strengthens Assumption 2-(a) by requiring that 1
T

∑T
t=1 f

c
t f

c′
t converges to Ikc

at rate Op
(
T−1/2

)
. This assumption is implied by standard mixing conditions on f ct by a maximal

inequality for mixing processes and has been used in this literature. See e.g., Gonçalves, McCracken,

and Perron (2017). AGGR(2019) assume factors to be mixing, explaining why they do not explicitly

write this assumption. It is used to omit Σ̃cc from the term 1
2
√
T

∑T
t=1 (U ′tUt − E (U ′tUt)) that appears in

the asymptotic expansion of the test statistic. Assumption 6-(b) is a high level condition that requires

the time series process ZN,t ≡ (U ′tUt − E (U ′tUt)) to satisfy a CLT. AGGR(2019) provide conditions

under which this high level condition holds. See in particular their Assumptions A.5 and A.6, which

are used to show that ZN,t is a NED process. Since our contribution is proving the bootstrap validity

in this context, we do not provide these more primitive conditions. They are not required to prove

our bootstrap theory.

Note that our assumptions (in particular, Assumptions 2-(b) and 4-(d)) imply that

Σ̃U ≡ T−1
T∑
t=1

E
(
UtU ′t

)
= µ2

N Σ̃U ,11 +Σ̃U ,22−µN Σ̃U ,12−µN Σ̃U ,21, with Σ̃U ,jk ≡ T−1
T∑
t=1

E
(
u

(c)
jt u

(c)′
kt

)
,

is O (1). This term enters the bias B ≡ tr
(

Σ̃−1
cc Σ̃U

)
that appears in the asymptotic distribution of

the test statistic.

A.2 Asymptotic expansion of the sample covariance of the factors estimation error

The main goal of this section is to provide an asymptotic expansion of 1
T

∑T
t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′
for j, k ∈ {1, 2} up to order Op

(
δ−4
NT

)
, which is then used to characterize the bias term. See Lemma A.5

in Appendix A.3.

To derive this result, we use the following identity for each group j, which follows from Bai (2003):

f̂jt −Hjfjt = V−1
j (Aj,1t +Aj,2t +Aj,3t +Aj,4t) . (8)
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Each of the terms Aj,1t through Aj,4t is defined as follows:

Aj,1t =
1

T

T∑
s=1

f̂jsγj,st, with γj,st = E(
1

Nj

Nj∑
i=1

εj,isεj,it);

Aj,2t =
1

T

T∑
s=1

f̂jsζj,st, with ζj,st =
1

Nj

Nj∑
i=1

(εj,isεj,it − E(εj,isεj,it));

Aj,3t =
1

T

T∑
s=1

f̂jsηj,st, with ηj,st =
1

Nj

Nj∑
i=1

λ′j,ifjsεj,it = f ′js
Λ′jεjt

Nj
; and

Aj,4t =
1

T

T∑
s=1

f̂jsξj,st, with ξj,st = f ′jt
Λ′jεjs

Nj
= ηj,ts.

The following auxiliary lemma is used to prove Lemma A.2.

Lemma A.1 Suppose Assumptions 1-4 strengthened by Assumption 5 hold. Then, for any j, k ∈
{1, 2}: (a) 1

T

∑T
t=1Aj,1tA

′
k,1t = Op

(
δ−4
NT

)
; (b) 1

T

∑T
t=1Aj,2tA

′
k,2t = Op

(
δ−4
NT

)
; (c) 1

T

∑T
t=1Aj,4tA

′
k,4t =

Op
(
δ−4
NT

)
; (d) 1

T

∑T
t=1Aj,mtA

′
k,nt = Op

(
δ−4
NT

)
for m 6= n, where m,n ∈ {1, 2, 3, 4}; and (e)

1

T

T∑
t=1

Aj,3tA
′
k,3t =

1√
NjNk

VjHj
1

T

T∑
t=1

ujtu
′
ktH

′
kV ′k = Op

(
N−1

)
, where ujt ≡

(
Λ′jΛj

Nj

)−1 Λ′jεjt√
Nj

.

Lemma A.2 Suppose Assumptions 1-4 strengthened by Assumption 5 hold. Then, for j, k ∈ {1, 2},

1

T

T∑
t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′
=

1√
NjNk

Hj

(
1

T

T∑
t=1

ujtu
′
kt

)
H ′k +Op

(
δ−4
NT

)
,

where ujt is as defined in Lemma A.1.

Proof of Lemma A.1. Part (a): We can bound the norm of 1
T

∑T
t=1Aj,1tA

′
k,1t by

1

T

T∑
t=1

∥∥Aj,1tA′k,1t∥∥ =
1

T

T∑
t=1

‖Aj,1t‖ ‖Ak,1t‖ ≤

(
1

T

T∑
t=1

‖Aj,1t‖2
)1/2(

1

T

T∑
t=1

‖Ak,1t‖2
)1/2

,

where the first equality follows by the fact that for any vectors A and B we have that ‖AB′‖2 =

tr (AB′BA′) = tr (A′AB′B) = ‖A‖2 ‖B‖2 given the definitions of the Frobenius norm of a matrix and

of the Euclidean norm of a vector. The inequality then follows by the Cauchy-Schwartz inequality.

Next, we show that 1
T

∑T
t=1 ‖Aj,1t‖

2 = Op
(
δ−4
NT

)
for any j, which implies the result. To show this,

write Aj,1t = A
(1)
j,1t +A

(2)
j,1t, where

A
(1)
j,1t ≡

1

T

T∑
s=1

(
f̂js −Hjfjs

)
γj,st and A

(2)
j,1t ≡ Hj

1

T

T∑
s=1

fjsγj,st.

Since
∥∥∥A(1)

j,1t +A
(2)
j,1t

∥∥∥2
≤ 2

(∥∥∥A(1)
j,1t

∥∥∥2
+
∥∥∥A(2)

j,1t

∥∥∥2
)

, we have that 1
T

∑T
t=1 ‖Aj,1t‖

2 ≤ 2 1
T

∑T
t=1

∥∥∥A(1)
j,1t

∥∥∥2
+

2 1
T

∑T
t=1

∥∥∥A(2)
j,1t

∥∥∥2
≡ 2I1 + 2II1. We analyse each term separately. First, by an application of the
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triangle inequality and the Cauchy-Schwartz inequality,

‖I1‖ ≤
1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

(f̂js −Hjfjs)γj,st

∥∥∥∥∥
2

≤ 1

T

T∑
s=1

‖f̂js−Hjfjs‖2
1

T 2

T∑
t=1

T∑
s=1

|γj,st|2 = Op(δ
−2
NTT

−1) = Op(δ
−4
NT ),

since T−1
∑T

s=1 ‖f̂js−Hjfjs‖2 = Op
(
δ−2
NT

)
and

∑T
s=1 |γj,st|2 = O (1) given Assumptions 1-5. Similarly,

we can show that ‖II1‖ = Op
(
T−2

)
= Op

(
δ−4
NT

)
by using Markov’s inequality and noting that

1

T

T∑
t=1

E

∥∥∥∥∥ 1

T

T∑
s=1

fjsγj,st

∥∥∥∥∥
2

≤ 1

T

T∑
t=1

E

(
1

T 2

T∑
s=1

T∑
l=1

f ′jlfjsγj,stγj,lt

)
,

where

E

(
1

T 2

T∑
s=1

T∑
l=1

f ′jlfjsγj,stγj,lt

)
=

1

T 2

T∑
s=1

T∑
l=1

E
(
f ′jlfjs

)︸ ︷︷ ︸
≤∆ by Ass-2(a)

γj,stγj,lt ≤ ∆
1

T 2
[

T∑
s=1

|γj,st|︸ ︷︷ ︸]
2

≤M2 by Ass-5(a)

≤ C 1

T 2
.

Note that to obtain this last bound, we impose Assumption 5-(c), which is a strengthening of Assump-

tion 3.

Part (b): we proceed as in part (a) and show that T−1
∑T

t=1 ‖Aj,2t‖2 = Op(δ
−4
NT ) for any j ∈ {1, 2}.

Adding and subtracting appropriately, T−1
∑T

t=1 ‖Aj,2t‖2 ≤ 2T−1
∑T

t=1 ‖A
(1)
j,2t‖2+2T−1

∑T
t=1 ‖A

(2)
j,2t‖2 ≡

2I2 + 2II2, where A
(1)
j,2t ≡ T−1

∑T
s=1(f̂js − Hjfjs)ζj,st and A

(2)
j,2t ≡ T−1

∑T
s=1Hjfjsζj,st, with ζj,st ≡

N−1
j

∑Nj

i=1(εj,isεj,it − E(εj,isεj,it)). First, note that

I2 ≤

(
1

T

T∑
s=1

‖f̂js −Hjfjs‖2
)(

1

T 2

T∑
t=1

T∑
s=1

|ζj,st|2
)

= Op(δ
−2
NTN

−1
j ) = Op(δ

−4
NT ),

since 1
T 2

∑T
t=1

∑T
s=1 |ζj,st|2 = Op(N

−1
j ) by Assumption 3-(c). Second, by Assumption 4-(b),

II2 ≤ ‖Hj‖2
1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

fjsζj,st

∥∥∥∥∥
2

= Op((TNj)
−1) = Op(δ

−4
NT ).

Part (c): Following the same arguments as above, the result follows by showing that T−1
∑T

t=1 ‖Aj,4t‖2 =

Op(δ
−4
NT ) for any j ∈ {1, 2}. Adding and subtracting appropriately, we can write Aj,4t = A

(1)
j,4t +A

(2)
j,4t,

where A
(1)
j,4t ≡

1
T

∑T
s=1(f̂js −Hjfjs)ξj,st and A

(2)
j,4t ≡

1
T

∑T
s=1Hjfjsξj,st, with ξj,st ≡ f ′jt

Λ′jεjs
Nj

. We show

that I4 ≡ T−1
∑T

t=1

∥∥∥A(1)
j,4t

∥∥∥2
and II4 ≡ T−1

∑T
t=1

∥∥∥A(2)
j,4t

∥∥∥2
are both Op

(
δ−4
NT

)
under our assumptions.

For the first term, using the definition of ξj,st, we have that

I4 =
1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

(f̂js −Hjfjs)
ε′jsΛj

Nj
fjt

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

T

T∑
s=1

(f̂js −Hjfjs)
ε′jsΛj

Nj

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op(δ−2

NT )Op(N−1
j )

1

T

T∑
t=1

‖fjt‖2︸ ︷︷ ︸
=Op(1) by Ass-2(a)

= Op(δ
−4
NT ),
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since E ‖fjt‖2 ≤ ∆, and by Cauchy-Schwartz’s inequality,∥∥∥∥∥ 1

T

T∑
s=1

(f̂js −Hjfjs)
ε′jsΛj

Nj

∥∥∥∥∥
2

≤ 1

T

T∑
s=1

∥∥∥f̂js −Hjfjs

∥∥∥2

︸ ︷︷ ︸
=Op(δ−2

NT )

1

T

T∑
s=1

∥∥∥∥ε′jsΛjNj

∥∥∥∥2

︸ ︷︷ ︸
=Op(N−1

j )

= Op
(
δ−4
NT

)
,

given that 1
T

∑T
s=1 ‖

Λ′jεjs√
Nj
‖2 = Op(1) under Assumption 4-(d). For II4, using the definition of ξj,st ≡

ε′jsΛj

Nj
fjt, we have that

II4 =
1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

Hjfjs
ε′jsΛj

Nj
f ′jt

∥∥∥∥∥
2

≤ 1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

Hjfjs
ε′jsΛj

Nj

∥∥∥∥∥
2

‖fjt‖2

≤ ‖Hj‖2
∥∥∥∥∥ 1

T

T∑
s=1

fjs
ε′jsΛj

Nj

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op((NjT )−1)

by Ass-4(c)

1

T

T∑
t=1

‖fjt‖2︸ ︷︷ ︸
=Op(1)

by Ass-2(a)

= Op
(
δ−4
NT

)
.

Part (d): Given parts (a), (b), and (c), all the cross terms that involve Aj,1t, Aj,2t and Aj,4t are

Op
(
δ−4
NT

)
by an application of Cauchy-Schwartz’s inequality. Hence, we only need to show that

T−1
∑T

t=1Aj,mtA
′
k,3t is Op

(
δ−4
NT

)
for m = 1, 2, 4. Using the definition of Ak,3t, we have that

T−1
T∑
t=1

Aj,mtA
′
k,3t = T−1

T∑
t=1

Aj,mt

(
1

T

T∑
s=1

f̂ksηk,st

)′
, where ηk,st ≡ f ′ks

Λ′kεkt
Nk

= T−1
T∑
t=1

Aj,mt

(
1

T

T∑
s=1

f̂ksf
′
ks

Λ′kεkt
Nk

)′

=

[
T−1

T∑
t=1

Aj,mt
ε′ktΛk
Nk

]
F ′kF̂k
T︸ ︷︷ ︸

=Op(1)

,

implying that it suffices to show that T−1
∑T

t=1Aj,mt
ε′ktΛk

Nk
= Op

(
δ−4
NT

)
. To show this, an application

of Cauchy Schwartz’s inequality is not enough because T−1
∑T

t=1

∥∥∥ ε′ktΛk

Nk

∥∥∥2
= Op

(
N−1
k

)
= Op

(
δ−2
NT

)
.

Hence, using the fact that T−1
∑T

t=1 ‖Aj,mt‖
2 = Op

(
δ−4
NT

)
for m 6= 3 implies by Cauchy-Schwartz’s

inequality that the term in square bracket is Op
(
δ−3
NT

)
, which is larger than Op

(
δ−4
NT

)
. We need a more

refined analysis, which in turn requires a strengthening of Assumptions 1-4 as given by Assumption

5. Starting with m = 1, by the definition of Aj,1t, we have that

1

T

T∑
t=1

Aj,1t
ε′ktΛk
Nk

=
1

T

T∑
t=1

A
(1)
j,1t

ε′ktΛk
Nk

+
1

T

T∑
t=1

A
(2)
j,1t

ε′ktΛk
Nk

≡ (a1) + (b1),
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where

(a1) = T−1
T∑
t=1

(
1

T

T∑
s=1

(
f̂js −Hjfjs

)
γj,st

)
ε′ktΛk
Nk

=
1

T

T∑
s=1

(
f̂js −Hjfjs

)( 1

T

T∑
t=1

γj,st
ε′ktΛk
Nk

)
,

and

(b1) = Hj
1

T

T∑
t=1

1

T

T∑
s=1

fjsγj,st
ε′ktΛk
Nk

= Hj
1

T

T∑
s=1

fjs
1

T

T∑
t=1

γj,st
ε′ktΛk
Nk

.

Note that we can rewrite (b1) as

(b1) = Hj
1

T

1√
TNk

[
1√
T

T∑
s=1

fjs

T∑
t=1

γj,st
ε′ktΛk√
Nk

]
︸ ︷︷ ︸

=Op(1) by Ass-5(b)

= Op
(
δ−4
NT

)
,

if we assume that the term in the square bracket is Op (1). We impose this as a new assumption, cf.

Assumption 5-(b). In addition,

‖(a1)‖ ≤


1

T

T∑
s=1

∥∥∥f̂js −Hjfjs

∥∥∥2

︸ ︷︷ ︸
=Op(δ−2

NT )


1/2

1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

γj,st
ε′ktΛk
Nk

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op(δ−6

NT )


1/2

,

where

1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

γj,st
ε′ktΛk
Nk

∥∥∥∥∥
2

=
1

Nk

1

T 2

 1

T

T∑
s=1

∥∥∥∥∥
T∑
t=1

γj,st
ε′ktΛk√
Nk

∥∥∥∥∥
2


︸ ︷︷ ︸
=Op(1) by Ass-5(c)

= Op
(
δ−6
NT

)
,

provided we assume that the term in square bracket is Op (1). We impose this as a new assumption,

cf. Assumption 5-(c). Consider next m = 2. Using using the decomposition of Aj,2t = A
(1)
j,2t + A

(2)
j,2t,

we can write

1

T

T∑
t=1

Aj,2t
ε′ktΛk
Nk

=
1

T

T∑
t=1

A
(1)
j,2t

ε′ktΛk
Nk

+
1

T

T∑
t=1

A
(2)
j,2t

ε′ktΛk
Nk

≡ (a2) + (b2),

where

(a2) = T−1
T∑
t=1

(
1

T

T∑
s=1

(
f̂js −Hjfjs

)
ζj,st

)
ε′ktΛk
Nk

=
1

T

T∑
s=1

(
f̂js −Hjfjs

)( 1

T

T∑
t=1

ζj,st
ε′ktΛk
Nk

)
,

and

(b2) = Hj
1

T

T∑
t=1

1

T

T∑
s=1

fjsζj,st
ε′ktΛk
Nk

= Hj
1

T

T∑
s=1

fjs
1

T

T∑
t=1

 1

Nj

Nj∑
i=1

(εj,isεj,it − E(εj,isεj,it))

 ε′ktΛk
Nk

.
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Note that

(b2) =
1√
T

√
N

NjNk

[
1√
T

T∑
s=1

fjs
1

T

T∑
t=1

(
1√
N

N∑
i=1

λk,iεk,it(εj,isεj,it − E(εj,isεj,it))

)]
︸ ︷︷ ︸

=Op(1) by Ass-5(d)

+
1

T

1√
NjNk

 1√
T

T∑
s=1

fjs
1√
T

T∑
t=1

1√
NjNk

Nj∑
i1=1

Nk∑
i2 6=i1

λk,i2εk,i2t(εj,i1sεj,i1t − E(εj,i1sεj,i1t))


︸ ︷︷ ︸

=Op(1) by Ass-5(e)

= Op
(
δ−4
NT

)
.

By Cauchy-Schwartz’s inequality, we can bound (a2) by

(
1

T

T∑
s=1

∥∥∥f̂js −Hjfjs

∥∥∥2
)1/2

︸ ︷︷ ︸
=Op(δ−1

NT )

 1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

ζj,st
ε′ktΛk
Nk

∥∥∥∥∥
2

︸ ︷︷ ︸
=(a2−ii)


1/2

= Op
(
δ−1
NT

)
Op
(
δ−3
NT

)
,

where we show that (a2− ii) = Op(δ
−6
NT ) by noting that

(a2− ii) =
N

N2
jN

2
k︸ ︷︷ ︸

=O(δ−6
NT )

 1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

(
1√
N

N∑
i=1

λk,iεk,it(εj,isεj,it − E(εj,isεj,it))

)∥∥∥∥∥
2


︸ ︷︷ ︸
=Op(1) by Ass-5(f)

+
1

NjNk

1

T︸ ︷︷ ︸
=O(δ−6

NT )

 1

T

T∑
s=1

∥∥∥∥∥∥ 1√
T

T∑
t=1

 1√
NjNk

Nj∑
i1=1

Nk∑
i2 6=i1

λk,i2εk,i2t(εj,i1sεj,i1t − E(εj,i1sεj,i1t))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
=Op(1) by Ass-5(g)

.

Finally, consider m = 4. Using the decomposition of Aj,4t = A
(1)
j,4t +A

(2)
j,4t, we can write

1

T

T∑
t=1

Aj,4t
ε′ktΛk
Nk

=
1

T

T∑
t=1

A
(1)
j,4t

ε′ktΛk
Nk

+
1

T

T∑
t=1

A
(2)
j,4t

ε′ktΛk
Nk

≡ (a4) + (b4),

where

(a4) = T−1
T∑
t=1

(
1

T

T∑
s=1

(
f̂js −Hjfjs

)
ξj,st

)
ε′ktΛk
Nk

=
1

T

T∑
s=1

(
f̂js −Hjfjs

)( 1

T

T∑
t=1

ξj,st
ε′ktΛk
Nk

)
, and

(b4) = Hj
1

T

T∑
t=1

1

T

T∑
s=1

fjsξj,st
ε′ktΛk
Nk

.

30



Note that

(b4) = Hj
1

T

T∑
t=1

1

T

T∑
s=1

fjsξj,st
ε′ktΛk
Nk

= Hj
1

T

T∑
s=1

fjs
1

T

T∑
t=1

(
f ′jt

Λ′jεjs

Nj

)
ε′ktΛk
Nk

= Hj

[
1

T

T∑
s=1

fjs
ε′jsΛj

Nj

]
︸ ︷︷ ︸

=Op

(
1√
TNj

)

[
1

T

T∑
t=1

fjt
ε′ktΛk
Nk

]
︸ ︷︷ ︸

=Op

(
1√
TNk

)
by Ass-4(c)

= Op

(
1

T
√
NjNk

)
= Op

(
δ−4
NT

)
.

In addition,

‖(a4)‖ ≤

(
1

T

T∑
s=1

∥∥∥f̂js −Hjfjs

∥∥∥2
)1/2

 1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

ξj,st
ε′ktΛk
Nk

∥∥∥∥∥
2
1/2

,

where

1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

ε′jsΛj

Nj
fjt
ε′ktΛk
Nk

∥∥∥∥∥
2

=
1

T

T∑
s=1

∥∥∥∥∥ε′jsΛjNj

1

T

T∑
t=1

fjt
ε′ktΛk
Nk

∥∥∥∥∥
2

≤ 1

T

T∑
s=1

∥∥∥∥ε′jsΛjNj

∥∥∥∥2
∥∥∥∥∥ 1

T

T∑
t=1

fjt
ε′ktΛk
Nk

∥∥∥∥∥
2

=
1

Nk

1

TNj

 1

T

T∑
s=1

∥∥∥∥∥ε′jsΛj√
Nj

∥∥∥∥∥
2


︸ ︷︷ ︸
=Op(1) by Ass-4(d)

∥∥∥∥∥ 1√
TNk

T∑
t=1

fjtε
′
ktΛk

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op(1) by Ass-4(c)

= Op

(
1

TNjNk

)
= Op

(
δ−6
NT

)
,

implying that ‖(a4)‖ = Op
(
δ−1
NT

)
Op
(
δ−3
NT

)
= Op

(
δ−4
NT

)
.

Part (e): By definition, Aj,3t ≡ 1
T

∑T
s=1 f̂jsηj,st, where ηj,st ≡ f ′js

Λ′jεjt
Nj

. Using the definition of the

rotation matrix, Hj ≡ V−1
j

F̂ ′jFj

T

Λ′jΛj

Nj
, we can rewrite this term as

T−1
T∑
t=1

Aj,3tA
′
k,3t =

1√
NjNk

(
1

T

T∑
s=1

f̂jsf
′
js

)
1

T

T∑
t=1

Λ′jεjt√
Nj

ε′ktΛk√
Nk

(
1

T

T∑
l=1

fklf̂
′
kl

)

=
1√
NjNk

(
F̂ ′jFj

T

)
1

T

T∑
t=1

Λ′jεjt√
Nj

ε′ktΛk√
Nk

(
F̂ ′kFk
T

)′

=
1√
NjNk

VjHj

(
Λ′jΛj

Nj

)−1
1

T

T∑
t=1

Λ′jεjt√
Nj

ε′ktΛk√
Nk

(
Λ′kΛk
Nk

)−1

H ′kV ′k = Op(N
−1),

by Assumption 2-(b) and Assumption 4-(d).

Proof of Lemma A.2. Using Bai (2003)’s identity to express f̂jt−Hjfjt = V−1
j (Aj,1t +Aj,2t +Aj,3t +Aj,4t),
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we can write

1

T

T∑
t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′
= V−1

j

1

T

T∑
t=1

(Aj,1t +Aj,2t +Aj,3t +Aj,4t) (Ak,1t +Ak,2t +Ak,3t +Ak,4t)
′ V−1

k

= V−1
j

1

T

T∑
t=1

Aj,1tA
′
k,1tV−1

k + V−1
j

1

T

T∑
t=1

Aj,2tA
′
k,2tV−1

k + V−1
j

1

T

T∑
t=1

Aj,3tA
′
k,3tV−1

k

+V−1
j

1

T

T∑
t=1

Aj,4tA
′
k,4tV−1

k + cross terms.

Given Lemma A.1, the dominant term is the third term. All other terms are Op
(
δ−4
NT

)
under our

assumptions, given Lemma A.1. This implies that

1

T

T∑
t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′
= V−1

j

1

T

T∑
t=1

Aj,3tA
′
k,3tV−1

k +Op
(
δ−4
NT

)
= V−1

j

1

T

T∑
t=1

(
1

T

T∑
s=1

f̂jsηj,st

)(
1

T

T∑
s=1

f̂ksηk,st

)′
V−1
k +Op

(
δ−4
NT

)
= V−1

j

1

T

T∑
t=1

(
1

T

T∑
s=1

f̂jsf
′
js

Λ′jεjt

Nj

)(
1

T

T∑
s=1

f̂ksf
′
ks

Λ′kεkt
Nk

)′
V−1
k +Op

(
δ−4
NT

)
= V−1

j

F̂ ′jFj

T

1

T

T∑
t=1

(
Λ′jεjt

Nj

)(
Λ′kεkt
Nk

)′ F ′kF̂k
T
V−1
k +Op

(
δ−4
NT

)
=

1√
NjNk

Hj
1

T

T∑
t=1

(
Λ′jΛj

Nj

)−1
(

Λ′jεjt√
Nj

)[(
Λ′kΛj
Nk

)−1(Λ′kεkt√
Nk

)]′
H ′k +Op

(
δ−4
NT

)
=

1√
NjNk

Hj

(
1

T

T∑
t=1

ujtu
′
kt

)
H ′k +Op

(
δ−4
NT

)
,

completing the proof .

A.3 Proof of Theorem 2.1

Following AGGR(2019), we define R̂ = V̂ −1
11 V̂12V̂

−1
22 V̂21, where V̂jk = 1

T

∑T
t=1 f̂jtf̂

′
kt. The test statistic

is given by ξ̂ (kc) ≡
∑kc

l=1 ρ̂l = tr
(

Λ̂1/2
)

, where Λ̂ = diag
(
ρ̂2
l : l = 1, . . . , kc

)
is a kc × kc diagonal

matrix containing the kc largest eigenvalues of R̂ obtained from the eigenvalue-eigenvector problem

R̂Ŵ = Ŵ Λ̂, where Ŵ is the k1 × kc eigenvector matrix. The main idea of the proof is to obtain an
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expansion of R̂ through order10 Op
(
δ−2
NT

)
, where δNT = min

(√
N,
√
T
)

, from which we obtain an

asymptotic expansion of Λ̂ and of tr
(

Λ̂1/2
)

.

The asymptotic expansion of R̂ is based on expanding V̂jk around Ṽjk ≡ 1
T

∑T
t=1 fjtf

′
kt and using

the fact that under the null hypothesis fjt and fkt share a set of common factors f ct (i.e. fjt =
(
f c′t , f

s′
jt

)′
for j = 1, 2). Adding and subtracting appropriately yields

V̂jk =
1

T

T∑
t=1

(
f̂jt −Hjfjt +Hjfjt

)(
f̂kt −Hkfkt +Hkfkt

)′
= Hj

1

T

T∑
t=1

fjtf
′
ktH

′
k +

1

T

T∑
t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′
+

1

T

T∑
t=1

(
f̂jt −Hjfjt

)
f ′ktH

′
k

+Hj
1

T

T∑
t=1

fjt

(
f̂kt −Hkfkt

)′
≡ V̈jk + Ẍjk,

with V̈jk ≡ Hj ṼjkH
′
k, Ṽjk ≡

1
T

∑T
t=1 fjtf

′
kt, and Ẍjk = HjX̂jkH

′
k, where letting ψjt ≡ H−1

j

(
f̂jt −Hjfjt

)
,

X̂jk ≡
1

T

T∑
t=1

ψjtψ
′
kt +

1

T

T∑
t=1

ψjtf
′
kt +

1

T

T∑
t=1

fjtψ
′
kt.

We can show that X̂jk = Op
(
δ−2
NT

)
under Assumptions 1-4 (see Lemma A.3(a) below). Using this

result, we can show that R̂ = R̈ + Op
(
δ−2
NT

)
, where R̈ = V̈ −1

11 V̈12V̈
−1

22 V̈21 = (H ′1)−1 R̃H ′1, where

R̃ ≡ Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21. The following auxiliary lemma states this result and characterizes the term of

order Op
(
δ−2
NT

)
under Assumptions 1-4. Note that for this result we do not need Assumptions 5 and

6. Nor do we need to impose the null hypothesis of kc common factors between the two panels.

Lemma A.3 Let Assumptions 1-4 hold. Then, (a) Ẍjk = Op
(
δ−2
NT

)
and X̂jk = Op

(
δ−2
NT

)
; and (b)

R̂ = (H ′1)−1
[
R̃+ Ṽ −1

11 Ψ̂
]
H ′1 +Op

(
δ−4
NT

)
, where

Ψ̂ ≡ −X̂11R̃+ X̂12B̃ + B̃′X̂21 − B̃′X̂22B̃, B̃ ≡ Ṽ −1
22 Ṽ21, and

X̂jk ≡
1

T

T∑
t=1

ψjtψ
′
kt +

1

T

T∑
t=1

ψjtf
′
kt +

1

T

T∑
t=1

fjtψ
′
kt, where ψjt ≡ H−1

j

(
f̂jt −Hjfjt

)
.

Remark 1 Lemma A.3(a) is the analogue of Lemma B.1 of AGGR(2019). Contrary to AGGR(2019),

we rely on Bai (2003)’s asymptotic expansion for f̂jt−Hjfjt, which explains why our set of assumptions

is different from those of AGGR(2019). Lemma A.3(b) is the analogue of Lemma B.2 of AGGR(2019)

under our Assumptions 1-4. Note that the order of magnitude of the remainder term follows from

expressing R̂ as a function of the inverse matrices of V̂jj = V̈jj(Ikj + V̈ −1
jj Ẍjj) and then using the

expansion (I −X)−1 = I+X+O
(
X2
)

to obtain (Ikj+V̈
−1
jj Ẍjj)

−1 = Ikj−V̈
−1
jj Ẍjj+Op

(
δ−4
NT

)
given that

10This means that it contains terms of order Op

(
δ−2
NT

)
and a remainder of order Op

(
δ−4
NT

)
. Instead, AGGR(2019) need

to obtain higher order expansions with remainders of order Op

(
δ−6
NT

)
because they replace our assumption N

T3/2 → 0

with N

T5/2 → 0.
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Ẍjk = Op
(
δ−2
NT

)
. Instead AGGR(2019) use a second-order expansion (I −X)−1 = I+X+X2+O

(
X3
)

to obtain their equation (B.5). They require a higher order asymptotic expansion than ours because

their rate conditions on N and T are weaker than those we assume under Assumption 1.

The next step is to obtain an asymptotic expansion of the kc largest eigenvalues of R̂ when the two

panels share kc common factors, i.e. when fjt = [f c′t , f
s′
jt ]
′ for j = 1, 2 (hence, when the null hypothesis

of kc common factors is true). We summarize these results in the following lemma.

Lemma A.4 Suppose that Assumptions 1-4 hold and assume that fjt = [f c′t , f
s′
jt ]
′ for j = 1, 2. Letting

Ψ̂cc denote the first kc × kc block obtained from Ψ̂ defined in Lemma A.3, it follows that

kc∑
l=1

ρ̂l = kc +
1

2
tr
(

Σ̃−1
cc Ψ̂cc

)
+Op

(
δ−4
NT

)
.

Remark 2 Lemma A.4 gives the asymptotic expansion of ξ̂ (kc) =
∑kc

l=1 ρ̂l through order Op
(
δ−2
NT

)
under the null hypothesis that there are kc factors that are common between the two groups. This result

is a simplified version of equation (B.13) of AGGR since it only contains terms of order Op
(
δ−2
NT

)
(their expansion contains terms of order Op

(
δ−4
NT

)
).

Next, we can use Lemma A.2 to expand 1
T

∑T
t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′
up to a remainder

of order Op
(
δ−4
NT

)
. We can then obtain the following result using the definition of Ψ̂cc given above.

Lemma A.5 Suppose Assumptions 1-4 strengthened by Assumption 5 hold. Then, letting u
(c)
jt denote

the kc × 1 vector containing the first kc rows of ujt ≡
(

Λ′jΛj

Nj

)
Λ′jεjt√
Nj

and defining Ut ≡ µNu
(c)
1t − u

(c)
2t ,

we have that under the null hypothesis of kc common factors,

Ψ̂cc = − 1

TN

T∑
t=1

UtU ′t +Op
(
δ−4
NT

)
.

The asymptotic distribution of the test statistic given Theorem 2.1 follows from the previous

lemmas by adding Assumption 6 (in addition to Assumptions 1-5).

Proof of Lemma A.3. Part (a): This follows from Lemma A.2 of Goncalves and Perron (2014)

and the fact that the rotation matrices are Op (1). Assumptions 1-4 are sufficient to apply this result.

Part (b): We follow AGGR(2019) but only consider a first-order asymptotic expansion of R̂. In

particular, we write

R̂ = V̂ −1
11 V̂12V̂

−1
22 V̂21 = (Ik1 + V̈ −1

11 Ẍ11)−1V̈ −1
11 (V̈12 + Ẍ12)(Ik2 + V̈ −1

22 Ẍ22)−1V̈ −1
22 (V̈21 + Ẍ21),

where we used V̂jj = V̈jj(Ikj + V̈ −1
jj Ẍjj). We then use the expansion (I −X)−1 = I +X +O

(
X2
)

to

obtain (Ikj +V̈ −1
jj Ẍjj)

−1 = Ikj−V̈
−1
jj Ẍjj+Op

(
δ−4
NT

)
. Contrary to AGGR(2019), we only keep terms up

to order Op
(
δ−4
NT

)
. Thus, the asymptotic expansion of R̂ in part (b) only considers terms that are linear

in Ẍjk. Terms involving products or squares of Ẍjk are of order Op
(
δ−4
NT

)
= Op

(
1/min

(
N2, T 2

))
,
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which is either Op
(
N/T 3/2

)
if δNT =

√
N or Op

(√
T/N

)
if δNT =

√
T . Since we assume that

√
T/N → 0 and N/T 3/2 → 0, the remainder is Op

(
δ−4
NT

)
= op (1).

Proof of Lemma A.4. We follow closely the derivations of AGGR(2019) leading to their

equation (B.13) in Section B.1.4. Specifically, consider the eigenvector-eigenvalue problem associated

with R̂, R̂Ŵ = Ŵ Λ̂, where we let Ŵ denote the k1 × kc matrix containing the kc eigenvectors

of R̂ associated to its largest kc eigenvalues ρ̂2
1, . . . , ρ̂

2
kc , which we collect into the diagonal matrix

Λ̂ = diag
(
ρ̂2
l : l = 1, . . . , kc

)
. We can replace R̂ from its asymptotic expansion in Lemma A.3(b):[(
H ′1
)−1

(
R̃+ Ṽ −1

11 Ψ̂
)
H ′1 +Op

(
δ−4
NT

)]
Ŵ = Ŵ Λ̂.

Pre-multiplying this equation by H ′1 gives(
R̃+ Ṽ −1

11 Ψ̂
)
H ′1Ŵ︸ ︷︷ ︸
=W̃1

= H ′1Ŵ︸ ︷︷ ︸
=W̃1

Λ̂ +Op
(
δ−4
NT

)
.

Since Ψ̂ = Op
(
δ−2
NT

)
, R̂ converges to R̃, implying that they share the same eigenvectors and eigenvalues

asymptotically. The next step is to use the fact that under the null when fjt = [f c′t , f
s′
jt ]
′ for j = 1, 2,

R̃ can be expressed as a block triangular matrix of the form

R̃ =

[
Ikc R̃cs

0 R̃ss

]
,

where R̃cs = Σ̃−1
cc Σ̃c1(Ik1−kc − R̃ss), with Σ̃cc = T−1

∑T
t=1 f

c
t f

c′
t , Σ̃c1 = T−1

∑T
t=1 f

c
t f

s′
1t and R̃ss is

as defined in Lemma B.3 of AGGR(2019). This result is an algebraic result that only relies on the

assumption that fjt = [f c′t , f
s′
jt ]
′ for j = 1, 2. Hence, it holds under our Assumptions 1-4. The fact that

R̃ has this special form is key for deriving the asymptotic distribution of the test statistic under the

null hypothesis. In particular, because R̃ is block triangular, its eigenvalues are equal to the eigenvalues

of Ikc and R̃ss, and we can show that the largest kc eigenvalues are all equal to 1. Similarly, the first

kc eigenvectors of R̃ can be shown to be of the form (xc′, 0′)′, where xc is a kc × 1 vector of constants

and 0 is a (k1 − kc)× 1 vector of zeros. Hence, letting

Ec
k1×kc

=

(
Ikc

0

)
and Es

k1×(k1−kc)
=

(
0

Ik1−ks

)
,

we can follow AGGR(2019) and decompose the eigenvector and eigenvalue matrices of R̂ as

W̃1 = EcÛ + Esα̂ and Λ̂ = Ikc + M̂,

where Û is a kc × kc nonsingular matrix, and M̂ and α̂ are also stochastic matrices. Because Ec and

Es span Rk1 , the decomposition of W̃1 is true by definition. The same applies to the decompositon of

Λ̂. However, under the null hypothesis, and because W̃1 and Λ̂ are also the eigenvector and eigenvalue

matrices of R̃, α̂ and M̂ converge to zero at rate Op
(
δ−2
NT

)
. In particular, replacing W̃1 and Λ̂ into the
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eigenvector-eigenvalue equation for R̂ and letting Φ̂ ≡ V −1
11 Ψ̂ gives:(

R̃+ Φ̂
)(

EcÛ + Esα̂
)

=
(
EcÛ + Esα̂

)(
Ikc + M̂

)
+Op

(
δ−4
NT

)
, and

R̃EcÛ + Φ̂EcÛ + R̃Esα̂+ Φ̂Esα̂ = EcÛ + EcÛM̂ + Esα̂+ Esα̂M̂ +Op
(
δ−4
NT

)
.

Using the fact that R̃Ec = Ec under the null hypothesis and the fact that Φ̂Esα̂ and Esα̂M̂ are of

order Op
(
δ−4
NT

)
implies that

Φ̂EcÛ + R̃Esα̂ = EcÛM̂ + Esα̂+Op
(
δ−4
NT

)
. (9)

Pre-multiplying equation (9) by E′c gives

E′cR̃Es︸ ︷︷ ︸
≡R̃cs

α̂+ E′cΦ̂Ec︸ ︷︷ ︸
≡Φ̂cc

Û = E′cEc︸ ︷︷ ︸
=Ikc

ÛM̂ + E′cEs︸ ︷︷ ︸
=0

α̂+Op
(
δ−4
NT

)
,

from which we obtain

M̂ = Û−1
(
R̃csα̂+ Φ̂ccÛ

)
+Op

(
δ−4
NT

)
.

Pre-multiplying equation (9) by E′s gives R̃ssα̂+ Φ̂scÛ = α̂+Op
(
δ−4
NT

)
, from which we obtain

α̂ =
(
Ik1−kc − R̃ss

)−1
Φ̂scÛ +Op

(
δ−4
NT

)
. (10)

Plugging α̂ into the expansion for M̂ gives

M̂ = Û−1

(
Φ̂cc + R̃cs

(
Ik1−kc − R̃ss

)−1
Φ̂sc

)
Û +Op

(
δ−4
NT

)
. (11)

The expansions (10) and (11) correspond to equations (C.61) and (C.62) in AGGR(2019)’s On-

line Appendix (proof of their Lemma B.4). Given the definition of R̃cs, we can write Σ̃−1
cc Σ̃c,1 =

R̃cs

(
Ik1−kc − R̃ss

)−1
, from which it follows that Φ̂cc+R̃cs

(
Ik1−kc − R̃ss

)−1
Φ̂sc = Σ̃−1

cc

[
Σ̃ccΦ̂cc + Σ̃c,1Φ̂sc

]
.

Letting f1t = (f c′t , f
s′
1t)
′, we can write

Ṽ11 ≡ T−1
T∑
t=1

f1tf
′
1t =

(
Σ̃cc Σ̃c,1

Σ̃1,c Σ̃11

)
.

Partioning Φ̂ accordingly, i.e. letting Φ̂ =

(
Φ̂cc Φ̂cs

Φ̂sc Φ̂ss

)
, implies that Σ̃ccΦ̂cc + Σ̃c,1Φ̂sc =

(
Ṽ11Φ̂

)
(cc)

,

where we use the notation (A)(cc) to denote the upper-left kc × kc block of any matrix A. Since

Φ̂ = V −1
11 Ψ̂, we obtain that

(
Ṽ11Φ̂

)
(cc)

=
(

Ψ̂
)

(cc)
≡ Ψ̂cc, the upper-left kc × kc block of Ψ̂ as defined

in Lemma A.3(b). Hence,

M̂ = Û−1Σ̃−1
cc Ψ̂ccÛ +Op

(
δ−4
NT

)
.

This implies that

Λ̂ = Ikc + M̂ = Ikc + Û−1Σ̃−1
cc Ψ̂ccÛ +Op

(
δ−4
NT

)
,
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from which it follows that

Λ̂1/2 = Ikc +
1

2
Û−1Σ̃−1

cc Ψ̂ccÛ +Op
(
δ−4
NT

)
,

by using the expansion (I +X)1/2 = I + 1
2X +Op

(
X2
)

with X = M̂ . Taking the trace of Λ̂1/2 yields

the asymptotic expansion of ξ̂ (kc) =
∑kc

l=1 ρ̂l.

Proof of Lemma A.5. This result follows by replacing Ψ̂cc with the expression from Lemma A.3(b).

In particular, recall that Ψ̂ is defined as

Ψ̂ ≡ −X̂11R̃+ X̂12B̃ + B̃′X̂21 − B̃′X̂22B̃,

where B̃ ≡ Ṽ −1
22 Ṽ21, and X̂jk is as defined in Lemma A.3(b). Under the null hypothesis, both R̃ and

B̃ have the same structure [Ec
... ∗], which implies that the upper-left kc × kc block Ψ̂cc is equal to

Ψ̂cc = −X̂11,cc + X̂12,cc + X̂21,cc − X̂22,cc,

as argued by AGGR(2019) (see their equation (C.69) in the Online Appendix). As explained by

AGGR(2019), we can rewrite the expression of Ψ̂cc as

Ψ̂cc = − 1

T

T∑
t=1

(
ψ

(c)
1t − ψ

(c)
2t

)(
ψ

(c)
1t − ψ

(c)
2t

)′
= −

{
1

T

T∑
t=1

ψ
(c)
1t ψ

(c)′
1t −

1

T

T∑
t=1

ψ
(c)
1t ψ

(c)′
2t +

1

T

T∑
t=1

ψ
(c)
2t ψ

(c)′
1t −

1

T

T∑
t=1

ψ
(c)
2t ψ

(c)′
2t

}
,

where ψ
(c)
jt ψ

(c)′
kt denotes the upper-left kc×kc block of the matrix ψjtψ

′
kt, where ψjt ≡ H−1

j

(
f̂jt −Hjfjt

)
.

For any j, k ∈ {1, 2}, we can write

1

T

T∑
t=1

ψjtψ
′
kt = H−1

j

1

T

T∑
t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′ (
H ′k
)−1

.

The result follows by replacing 1
T

∑T
t=1

(
f̂jt −Hjfjt

)(
f̂kt −Hkfkt

)′
with the asymptotic expansion

given in Lemma A.2.

Proof of Theorem 2.1. The proof of this result follows from Lemmas A.3, A.4, and A.5 under

Assumptions 1-6, when the null hypothesis is true.

B Bootstrap results

We organize this appendix as follows. In Appendix B.1, we provide a set of bootstrap high level

conditions which are the bootstrap analogues of Assumptions 3, 4, and 5. These conditions are used

to prove two auxiliary lemmas in Appendix B.2. Appendix B.3 provides the proofs of the results in

Section 3.
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B.1 Bootstrap high level conditions

Here, we propose a set of high level conditions on ε∗j,it under which we can characterize the asymptotic

distribution of the bootstrap test statistic ξ̂∗ (kc). These conditions can be verified for any resampling

scheme.

Condition A*

(i) E∗
(
ε∗j,it

)
= 0, for all i, t.

(ii) 1
T

∑T
t=1

∑T
s=1

∣∣∣γ∗j,st∣∣∣2 = Op (1) , where γ∗j,st ≡ E∗( 1
Nj

∑Nj

i=1 ε
∗
j,isε

∗
j,it).

(iii) 1
T 2

∑T
t=1

∑T
s=1E

∗
∣∣∣∣ 1√

Nj

∑Nj

i=1

(
ε∗j,itε

∗
j,is − E∗

(
ε∗j,itε

∗
j,is

))∣∣∣∣2 = Op (1) .

Condition B*

(i) 1
T

∑T
t=1

∑T
s=1 f̃jsf̃

′
jtγ
∗
j,st = Op (1).

(ii) 1
T

∑T
t=1E

∗
∥∥∥∥ 1√

TNj

∑T
s=1

∑Nj

i=1 f̃js(ε
∗
j,isε

∗
j,it − E∗(ε∗j,isε∗j,it))

∥∥∥∥2

= Op (1).

(iii) E∗
∥∥∥∥ 1√

TNj

∑T
t=1 f̃jtε

∗′
jtΛ̃j

∥∥∥∥2

= Op (1) .

(iv) 1
T

∑T
t=1E

∗
∥∥∥∥ Λ̃′jε

∗
jt√
Nj

∥∥∥∥2

= Op (1) .

Condition C*

(i) 1
T

∑T
t=1

∥∥∥∑T
s=1 f̃jsγ

∗
j,st

∥∥∥2
= Op (1) .

(ii) 1√
T

∑T
s=1 f̃js

∑T
t=1 γ

∗
j,st

ε∗′ktΛ̃k√
Nk

= Op∗ (1).

(iii) 1
T

∑T
s=1E

∗
∥∥∥∑T

t=1 γ
∗
j,st

ε∗′ktΛ̃k√
Nk

∥∥∥2

= Op (1) .

(iv) 1√
T

∑T
s=1 f̃js

1
T

∑T
t=1

(
1√
N

∑N
i=1 λ̃k,iε

∗
k,it(ε

∗
j,isε

∗
j,it − E∗(ε∗j,isε∗j,it))

)
= Op∗(1), whereN = min(N1, N2).

(v) 1√
T

∑T
s=1 f̃js

1√
T

∑T
t=1

(
1√
NjNk

∑Nj

i1=1

∑Nk
i2 6=i1 λ̃k,i2ε

∗
k,i2t

(ε∗j,i1sε
∗
j,i1t
− E∗(ε∗j,i1sε

∗
j,i1t

))

)
= Op∗(1).

(vi) 1
T

∑T
s=1

∥∥∥ 1
T

∑T
t=1

(
1√
N

∑N
i=1 λ̃k,iε

∗
k,it(ε

∗
j,isε

∗
j,it − E∗(ε∗j,isε∗j,it))

)∥∥∥2
= Op∗(1), whereN = min(N1, N2).

(vii) 1
T

∑T
s=1

∥∥∥∥ 1√
T

∑T
t=1

(
1√
NjNk

∑Nj

i1=1

∑Nk
i2 6=i1 λ̃k,i2ε

∗
k,i2t

(ε∗j,i1sε
∗
j,i1t
− E∗(ε∗j,i1sε

∗
j,i1t

))

)∥∥∥∥2

= Op∗(1).

Remark 3 Conditions A* and B* are used in GP(2014) and Gonçalves and Perron (2020) and have

been verified for the wild bootstrap and the cross-sectional dependent bootstrap, respectively, when f̃jt

and λ̃j,i are the PCA estimators. Here, they are obtained as in AGGR(2019) under the null. Condition

C* is new to the group factor model and needs to verified.
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B.2 Asymptotic expansion of the sample covariance of the bootstrap factors esti-

mation error

For each group j, we have that

f̂∗jt −H∗j f̃jt = V∗−1
j

(
A∗j,1t +A∗j,2t +A∗j,3t +A∗j,4t

)
, (12)

where

A∗j,1t =
1

T

T∑
s=1

f̂∗jsγ
∗
j,st, with γ∗j,st = E∗

 1

Nj

Nj∑
i=1

ε∗j,isε
∗
j,it

 ;

A∗j,2t =
1

T

T∑
s=1

f̂∗jsζ
∗
j,st, with ζj,st =

1

Nj

Nj∑
i=1

(ε∗j,isε
∗
j,it − E∗(ε∗j,isε∗j,it));

A∗j,3t =
1

T

T∑
s=1

f̂∗jsη
∗
j,st, with η∗j,st =

1

Nj

Nj∑
i=1

λ̃′j,if̃jsε
∗
j,it = f̃ ′js

Λ̃′jε
∗
jt

Nj
; and

A∗j,4t =
1

T

T∑
s=1

f̂∗jsξ
∗
j,st, with ξ∗j,st = f̃ ′jt

Λ̃′jε
∗
js

Nj
= η∗j,ts.

First, note that 1
T

∑T
s=1 ‖f̂∗js − H∗j f̃js‖2 = Op∗

(
δ−2
NT

)
under Conditions A* and B* below, which

are all from GP(2014).

The following auxiliary lemmas are the bootstrap analogues of Lemmas A.1 and A.2.

Lemma B.1 Suppose Conditions A*, B* and C* hold. Then, for any j, k ∈ {1, 2}: (a) 1
T

∑T
t=1A

∗
j,1tA

∗′
k,1t =

Op∗
(
δ−4
NT

)
; (b) 1

T

∑T
t=1A

∗
j,2tA

∗′
k,2t = Op∗

(
δ−4
NT

)
; (c) 1

T

∑T
t=1A

∗
j,4tA

∗′
k,4t = Op∗

(
δ−4
NT

)
; (d) 1

T

∑T
t=1A

∗
j,mtA

∗′
k,nt =

Op∗
(
δ−4
NT

)
for m 6= n, where m,n ∈ {1, 2, 3, 4}; and (e)

1

T

T∑
t=1

A∗j,3tA
∗′
k,3t =

1√
NjNk

V∗jH∗j
1

T

T∑
t=1

u∗jtu
∗′
ktH

∗′
k V∗′k = Op∗

(
N−1

)
, where u∗jt ≡

(
Λ̃′jΛ̃j

Nj

)−1
Λ̃′jε

∗
jt√
Nj

.

Lemma B.2 Suppose Conditions A*, B* and C* hold. Then, for j, k ∈ {1, 2},

1

T

T∑
t=1

(
f̂∗jt −H∗j f̃jt

)(
f̂∗kt −H∗k f̃kt

)′
=

1√
NjNk

H∗j

(
1

T

T∑
t=1

u∗jtu
∗′
kt

)
H∗′k +Op∗

(
δ−4
NT

)
,

where u∗jt is as defined in Lemma B.1.

Proof of Lemma B.1. This proof follows closely the proof of Lemma A.1. Part (a): We can

bound the norm of 1
T

∑T
t=1A

∗
j,1tA

∗′
k,1t by

1

T

T∑
t=1

∥∥A∗j,1tA∗′k,1t∥∥ ≤
(

1

T

T∑
t=1

∥∥A∗j,1t∥∥2

)1/2(
1

T

T∑
t=1

∥∥A∗k,1t∥∥2

)1/2

,

thus we show that 1
T

∑T
t=1

∥∥∥A∗j,1t∥∥∥2
= Op

(
δ−4
NT

)
for any j. To show this, we write A∗j,1t = A

∗(1)
j,1t +A

∗(2)
j,1t ,
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where

A
∗(1)
j,1t ≡

1

T

T∑
s=1

(
f̂∗js −H∗j f̃js

)
γ∗j,st and A

∗(1)
j,1t ≡ H

∗
j

1

T

T∑
s=1

f̃jsγ
∗
j,st,

and we show that I∗1 ≡ 1
T

∑T
t=1

∥∥∥A∗(1)
j,1t

∥∥∥2
and II∗1 ≡ 1

T

∑T
t=1

∥∥∥A∗(2)
j,1t

∥∥∥2
are both of order Op∗

(
δ−4
NT

)
under our bootstrap high level conditions. First, note that

‖I∗1‖ ≤
1

T

T∑
s=1

‖f̂∗js −H∗j f̃js‖2︸ ︷︷ ︸
=Op∗(δ−2

NT )

1

T 2

T∑
t=1

T∑
s=1

|γ∗j,st|2︸ ︷︷ ︸
=Op∗ (T−1)

= Op∗(δ
−2
NTT

−1) = Op∗(δ
−4
NT ),

since T−1
∑T

s=1 ‖f̂∗js − H∗j f̃js‖2 = Op∗
(
δ−2
NT

)
under Condition A*, and T−2

∑T
t=1

∑T
s=1 |γ∗j,st|2 =

Op
(
T−1

)
under Condition A*-(i). Similarly, ignoring H∗j = Op∗ (1), Condition C*-(i) (which is new)

implies that II∗1 = Op∗
(
T−2

)
= Op∗

(
δ−4
NT

)
since

1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

f̃jsγ
∗
j,st

∥∥∥∥∥
2

=
1

T 2

1

T

T∑
t=1

∥∥∥∥∥
T∑
s=1

f̃jsγ
∗
j,st

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op(1) by Cond-C*(i)

.

Part (b): We let I∗2 ≡ T−1
∑T

t=1 ‖A
∗(1)
j,2t ‖2 and II∗2 ≡ T−1

∑T
t=1 ‖A

∗(2)
j,2t ‖2, whereA

∗(1)
j,2t ≡ T−1

∑T
s=1(f̂∗js−

H∗j f̃js)ζ
∗
j,st and A

∗(2)
j,2t ≡ H∗j T

−1
∑T

s=1 f̃jsζ
∗
j,st, with ζ∗j,st ≡ N−1

j

∑Nj

i=1(ε∗j,isε
∗
j,it − E∗(ε∗j,isε∗j,it)). First,

note that

I∗2 ≤

(
1

T

T∑
s=1

‖f̂∗js −H∗j f̃js‖2
)(

1

T 2

T∑
t=1

T∑
s=1

|ζ∗j,st|2
)

= Op∗(δ
−2
NTN

−1
j ) = Op(δ

−4
NT ),

since 1
T 2

∑T
t=1

∑T
s=1 |ζ∗j,st|2 = Op∗(N

−1
j ) as implied by Condition A*-(iii). Second, by Condition B*-

(ii),

II∗2 ≤ ‖H∗j ‖2
1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

f̃jsζ
∗
j,st

∥∥∥∥∥
2

= Op((TNj)
−1) = Op(δ

−4
NT ).

Part (c): We let A
∗(1)
j,4t ≡

1
T

∑T
s=1(f̂∗js − H∗j f̃js)ξ∗j,st and A

∗(2)
j,4t ≡ H∗j

1
T

∑T
s=1 f̃jsξ

∗
j,st, with ξ∗j,st ≡

f̃ ′jt
Λ̃′jε
∗
js

Nj
. We show that I∗4 ≡ T−1

∑T
t=1

∥∥∥A∗(1)
j,4t

∥∥∥2
and II4 ≡ T−1

∑T
t=1

∥∥∥A∗(2)
j,4t

∥∥∥2
are both Op∗

(
δ−4
NT

)
under our assumptions. For the first term, using the definition of ξ∗j,st, we have that

I∗4 =
1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

(f̂∗js −H∗j f̃js)
ε∗′jsΛ̃j

Nj
f̃jt

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

T

T∑
s=1

(f̂∗js −H∗j f̃js)
ε∗′jsΛ̃j

Nj

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op∗(δ−2

NT )Op∗(N−1
j )

1

T

T∑
t=1

‖f̃jt‖2︸ ︷︷ ︸
=kj

= Op(δ
−4
NT ),
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since by Cauchy-Schwartz’s inequality,∥∥∥∥∥ 1

T

T∑
s=1

(f̂∗js −H∗j f̃js)
ε∗′jsΛ̃j

Nj

∥∥∥∥∥
2

≤ 1

T

T∑
s=1

∥∥∥f̂∗js −H∗j f̃js∥∥∥2

︸ ︷︷ ︸
=Op∗(δ−2

NT )

1

T

T∑
s=1

∥∥∥∥∥ε∗′jsΛ̃jNj

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op∗(N−1

j )

= Op∗
(
δ−4
NT

)
,

given that 1
T

∑T
s=1

∥∥∥∥ Λ̃′jε
∗
js√
Nj

∥∥∥∥2

= Op∗(1) under Condition B*-(iv). For II∗4 , using the definition of ξ∗j,st ≡

ε∗′jsΛ̃j

Nj
f̃jt (and ignoring H∗j = Op∗ (1)), we have that

II∗4 =
1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

f̃js
ε∗′jsΛ̃j

Nj
f̃ ′jt

∥∥∥∥∥
2

≤ 1

T

T∑
t=1

∥∥∥∥∥ 1

T

T∑
s=1

f̃js
ε∗′jsΛ̃j

Nj

∥∥∥∥∥
2 ∥∥∥f̃jt∥∥∥2

≤ ‖Hj‖2
1

TNj

∥∥∥∥∥ 1√
TNj

T∑
s=1

f̃jsε
∗′
jsΛ̃j

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op∗ (1) by Cond-B*(iii)

1

T

T∑
t=1

∥∥∥f̃jt∥∥∥2

︸ ︷︷ ︸
=kj

= Op∗
(
δ−4
NT

)
.

Part (d): Given parts (a), (b), and (c), all the cross terms that involve A∗j,1t, A
∗
j,2t and A∗j,4t are

Op∗
(
δ−4
NT

)
by an application of Cauchy-Schwartz’s inequality. Hence, we only need to show that

T−1
∑T

t=1A
∗
j,mtA

∗′
k,3t is Op∗

(
δ−4
NT

)
for m = 1, 2, 4. Using the definition of A∗k,3t, we have that

T−1
T∑
t=1

A∗j,mtA
∗′
k,3t = T−1

T∑
t=1

A∗j,mt

(
1

T

T∑
s=1

f̂∗ksη
∗
k,st

)′
, where η∗k,st ≡ f̃ ′ks

Λ̃′kε
∗
kt

Nk

= T−1
T∑
t=1

A∗j,mt

(
1

T

T∑
s=1

f̂∗ksf̃
′
ks

Λ̃′kε
∗
kt

Nk

)′

=

[
T−1

T∑
t=1

A∗j,mt
ε∗′ktΛ̃k
Nk

]
F̃ ′kF̃

∗
k

T︸ ︷︷ ︸
=Op∗ (1)

.

Thus, it suffices to show that T−1
∑T

t=1A
∗
j,mt

ε∗′ktΛ̃k

Nk
= Op∗

(
δ−4
NT

)
. Starting with m = 1, by the definition

of A∗j,1t, we have that

1

T

T∑
t=1

A∗j,1t
ε∗′ktΛ̃k
Nk

=
1

T

T∑
t=1

A
∗(1)
j,1t

ε∗′ktΛ̃k
Nk

+
1

T

T∑
t=1

A
∗(2)
j,1t

ε∗′ktΛ̃k
Nk

≡ (a∗1) + (b∗1).

Note that we can rewrite (b∗1) as

(b∗1) = H∗j
1

T

1√
TNk

[
1√
T

T∑
s=1

f̃js

T∑
t=1

γ∗j,st
ε∗′ktΛ̃k√
Nk

]
︸ ︷︷ ︸

=Op∗ (1) by Cond-C*(ii)

= Op∗
(
δ−4
NT

)
.
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In addition,

‖(a∗1)‖ ≤


1

T

T∑
s=1

∥∥∥f̂∗js −H∗j f̃js∥∥∥2

︸ ︷︷ ︸
=Op∗(δ−2

NT )


1/2

1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

γ∗j,st
ε∗′ktΛ̃k
Nk

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op∗(δ−6

NT )


1/2

,

where

1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

γ∗j,st
ε∗′ktΛ̃k
Nk

∥∥∥∥∥
2

=
1

Nk

1

T 2

 1

T

T∑
s=1

∥∥∥∥∥
T∑
t=1

γ∗j,st
ε∗′ktΛ̃k√
Nk

∥∥∥∥∥
2


︸ ︷︷ ︸
=Op∗ (1) by Cond-C*(iii)

= Op∗
(
δ−6
NT

)

provided the term in square bracket is Op∗ (1), which follows under Condition C*-(iii). Consider next

m = 2. Using the decomposition of A∗j,2t = A
∗(1)
j,2t +A

∗(2)
j,2t , we can write

1

T

T∑
t=1

A∗j,2t
ε∗′ktΛ̃k
Nk

=
1

T

T∑
t=1

A
∗(1)
j,2t

ε∗′ktΛ̃k
Nk

+
1

T

T∑
t=1

A
∗(2)
j,2t

ε∗′ktΛ̃k
Nk

≡ (a∗2) + (b∗2).

Note that

(b∗2) =
1√
T

√
N

NjNk

[
1√
T

T∑
s=1

f̃js
1

T

T∑
t=1

(
1√
N

N∑
i=1

λ̃k,iε
∗
k,it(ε

∗
j,isε

∗
j,it − E∗(ε∗j,isε∗j,it))

)]
︸ ︷︷ ︸

=Op∗ (1) by Cond-C*(iv)

+
1

T

1√
NkNj

 1√
T

T∑
s=1

f̃js
1√
T

T∑
t=1

 1√
NjNk

Nj∑
i1=1

Nk∑
i2 6=i1

λ̃k,i2ε
∗
k,i2t(ε

∗
j,i1sε

∗
j,i1t − E

∗(ε∗j,i1sε
∗
j,i1t))


︸ ︷︷ ︸

=Op∗ (1) by Cond-C*(v)

= Op∗
(
δ−4
NT

)
.

By Cauchy-Schwartz’s inequality, we can bound (a∗2) by

(
1

T

T∑
s=1

∥∥∥f̂∗js −H∗j f̃js∥∥∥2
)1/2

︸ ︷︷ ︸
=Op∗(δ−1

NT )


1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

ζ∗j,st
ε∗′ktΛ̃k
Nk

∥∥∥∥∥
2

︸ ︷︷ ︸
=(a∗2−ii)


1/2

= Op∗
(
δ−1
NT

)
Op∗

(
δ−3
NT

)
,

since

(a∗2 − ii) =
N

N2
kN

2
j︸ ︷︷ ︸

=O(δ−6
NT )

 1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

(
1√
N

N∑
i=1

λ̃k,iε
∗
k,it(ε

∗
j,isε

∗
j,it − E∗(ε∗j,isε∗j,it))

)∥∥∥∥∥
2


︸ ︷︷ ︸
=Op∗ (1) by Cond-C*(vi)

+
1

NkNj

1

T︸ ︷︷ ︸
=O(δ−6

NT )

 1

T

T∑
s=1

∥∥∥∥∥∥ 1√
T

T∑
t=1

 1√
NjNk

Nj∑
i1=1

Nk∑
i2 6=i1

λ̃k,i2ε
∗
k,i2t(ε

∗
j,i1sε

∗
j,i1t − E

∗(ε∗j,i1sε
∗
j,i1t))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
=Op∗ (1) by Cond-C*(vii)

= Op∗(δ
−6
NT ).
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Finally, consider m = 4. Using using the decomposition of A∗j,4t = A
∗(1)
j,4t +A

∗(2)
j,4t , we can write

1

T

T∑
t=1

A∗j,4t
ε∗′ktΛ̃k
Nk

=
1

T

T∑
t=1

A
∗(1)
j,4t

ε∗′ktΛ̃k
Nk

+
1

T

T∑
t=1

A
∗(2)
j,4t

ε∗′ktΛ̃k
Nk

≡ (a∗4) + (b∗4).

Note that

(b∗4) = H∗j
1

T

T∑
t=1

1

T

T∑
s=1

f̃jsξ
∗
j,st

ε∗′ktΛ̃k
Nk

= H∗j

[
1

T

T∑
s=1

f̃js
ε∗′jsΛ̃j

Nj

]
︸ ︷︷ ︸

=Op∗

(
1√
TNj

)

[
1

T

T∑
t=1

f̃jt
ε∗′ktΛ̃k
Nk

]
︸ ︷︷ ︸

=Op∗

(
1√
TNk

)
by Cond-B*(iii)

= Op∗

(
1

T
√
NjNk

)
= Op∗

(
δ−4
NT

)
.

In addition,

‖(a∗4)‖ ≤

(
1

T

T∑
s=1

∥∥∥f̂∗js −H∗j f̃js∥∥∥2
)1/2

 1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

ξ∗j,st
ε∗′ktΛ̃k
Nk

∥∥∥∥∥
2
1/2

,

where

1

T

T∑
s=1

∥∥∥∥∥ 1

T

T∑
t=1

ε∗′jsΛ̃j

Nj
f̃jt
ε∗′ktΛ̃k
Nk

∥∥∥∥∥
2

=
1

T

T∑
s=1

∥∥∥∥∥ε∗′jsΛ̃jNj

1

T

T∑
t=1

f̃jt
ε∗′ktΛ̃k
Nk

∥∥∥∥∥
2

≤ 1

T

T∑
s=1

∥∥∥∥∥ε∗′jsΛ̃jNj

∥∥∥∥∥
2 ∥∥∥∥∥ 1

T

T∑
t=1

f̃jt
ε∗′ktΛ̃k
Nk

∥∥∥∥∥
2

=
1

Nk

1

TNj

 1

T

T∑
s=1

∥∥∥∥∥ε∗′jsΛ̃j√
Nj

∥∥∥∥∥
2


︸ ︷︷ ︸
=Op∗ (1) by Cond-B*(iv)

∥∥∥∥∥ 1√
TNk

T∑
t=1

f̃jtε
∗′
ktΛ̃k

∥∥∥∥∥
2

︸ ︷︷ ︸
=Op∗ (1) by Cond-B*(iii)

= Op∗

(
1

TNjNk

)
= Op∗

(
δ−6
NT

)
,

implying that ‖(a∗4)‖ = Op∗
(
δ−4
NT

)
.

Part (e): By definition, A∗j,3t ≡ 1
T

∑T
s=1 f̃

∗
jsη
∗
j,st, where η∗j,st ≡ f̃ ′js

Λ̃′jε
∗
jt

Nj
. Using the definition of the

bootstrap rotation matrix, H∗j ≡ V
∗−1
j

F̂ ∗′j F̃j

T

Λ̃′jΛ̃j

Nj
, we can rewrite this term as

T−1
T∑
t=1

A∗j,3tA
∗′
k,3t =

1√
NjNk

(
1

T

T∑
s=1

f̂∗jsf̃
′
js

)
1

T

T∑
t=1

Λ̃′jε
∗
jt√
Nj

ε∗′ktΛ̃k√
Nk

(
1

T

T∑
l=1

f̃klf̂
∗′
kl

)

=
1√
NjNk

(
F̂ ∗′j F̃j

T

)
1

T

T∑
t=1

Λ̃′jε
∗
jt√
Nj

ε∗′ktΛ̃k√
Nk

(
F̂ ∗′k F̃k
T

)′

=
1√
NjNk

V∗jH∗j

(
Λ̃′jΛ̃j

Nj

)−1
1

T

T∑
t=1

Λ̃′jε
∗
jt√
Nj

ε∗′ktΛ̃k√
Nk

(
Λ̃′kΛ̃k
Nk

)−1

H∗′k V∗′k = Op∗(N
−1),

given in particular Condition B*-(iv).
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Proof of Lemma B.2. This follows immediately from Lemma B.1.

B.3 Proof of bootstrap results in Section 3

The section is organized as follows. First, we state several auxiliary lemmas used to prove Lemma 3.1

and Theorem 3.1, followed by their proofs. Then, we prove Lemma 3.1, Theorem 3.1 and Proposi-

tion 3.1.

Following AGGR(2019), we define R̂∗ = V̂ ∗−1
11 V̂ ∗12V̂

∗−1
22 V̂ ∗21, where V̂ ∗jk = 1

T

∑T
t=1 f̂

∗
jtf̂
∗′
kt. The test

statistic is given by ξ̂∗ (kc) ≡
∑kc

l=1 ρ̂
∗
l = tr

(
Λ̂∗1/2

)
, where Λ̂∗ = diag

(
ρ̂∗2l : l = 1, . . . , kc

)
is a kc × kc

diagonal matrix containing the kc largest eigenvalues of R̂∗ obtained from the eigenvalue-eigenvector

problem R̂∗Ŵ ∗ = Ŵ ∗Λ̂∗, where Ŵ ∗ is a k1 × kc matrix of eigenvectors associated to kc largest

eigenvalues. The main idea of the proof is to obtain an expansion of R̂∗ through order Op∗
(
δ−2
NT

)
,

where δNT = min
(√

N,
√
T
)

, from which we obtain an asymptotic expansion of Λ̂∗ and of tr
(

Λ̂∗1/2
)

.

The asymptotic expansion of R̂∗ is based on expanding V̂ ∗jk around11 Ṽ ∗jk ≡
1
T

∑T
t=1 f̃jtf̃

′
kt, where

f̃jt =
(
f̂ c′t , f̂

s′
jt

)′
for j = 1, 2. Note that f̃jt imposes the null hypothesis that there are kc common

factors among the two panels and it is different from the vector f̂jt, which contains the kj largest

principal components of Yj . Hence, the need to use different notation. The properties of the bootstrap

test rely heavily from imposing the null hypothesis in the bootstrap DGP. Adding and subtracting

appropriately yields

V̂ ∗jk = V̈ ∗jk + Ẍ∗jk, with V̈ ∗jk ≡ H∗j Ṽ ∗jkH∗′k and Ẍ∗jk = H∗j X̂
∗
jkH

∗′
k ,

where letting ψ∗jt ≡ H
∗−1
j

(
f̂∗jt −H∗j f̃jt

)
,

X̂∗jk ≡
1

T

T∑
t=1

ψ∗jtψ
∗′
kt +

1

T

T∑
t=1

ψ∗jtf̃
′
kt +

1

T

T∑
t=1

f̃jtψ
∗′
kt.

Under Conditions A* and B*, we can show that X̂∗jk = Op∗
(
δ−2
NT

)
(this follows from Lemma B.3 of GP

(2014)). Using this result, we can show that R̂∗ = R̈∗ + Op∗
(
δ−2
NT

)
, where R̈∗ = V̈ ∗−1

11 V̈ ∗12V̈
∗−1

22 V̈ ∗21 =

(H∗′1 )−1 R̃∗H∗′1 , where R̃∗ ≡ Ṽ ∗−1
11 Ṽ ∗12Ṽ

∗−1
22 Ṽ ∗21. Note that R̃∗ is the bootstrap analogue of R̃ ≡

Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21 defined in Lemma B.2 of AGGR(2019).

The following auxiliary lemma provides the asymptotic expansion of R̂∗ through order Op∗
(
δ−2
NT

)
.

Lemma B.3 Suppose Conditions A* and B* hold. Under Assumption 1,

R̂∗ =
(
H∗′1

)−1
[
R̃∗ + Ψ̂∗

]
H∗′1 +Op∗

(
δ−4
NT

)
,

11Note that Ṽ ∗jk is the bootstrap analogue of Ṽjk ≡ T−1∑T
t=1 fjtf

′
kt defined in eq. (B.3) of AGGR(2019). Although

we keep the star notation when defining Ṽ ∗jk, we note that Ṽ ∗jk is not random when we condition on the original sample.
We adopt this notation to be consistent with notation in AGGR(2019).
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where Ψ̂∗ ≡ −X̂∗11R̃
∗ + X̂∗12B̃

∗ + B̃∗′X̂∗21 − B̃∗′X̂∗22B̃
∗, B̃∗ ≡ Ṽ ∗21, and

X̂∗jk ≡
1

T

T∑
t=1

ψ∗jtψ
∗′
kt +

1

T

T∑
t=1

ψ∗jtf̃
′
kt +

1

T

T∑
t=1

f̃jtψ
∗′
kt, where ψ∗jt ≡ H∗−1

j

(
f̂∗jt −H∗j f̃jt

)
.

Remark 4 Lemma B.3 is the bootstrap analogue of Lemma B.2 of AGGR(2019) when the rate condi-

tions on N and T are as assumed in Assumption 1. Note that under this assumption, we only require

an asymptotic expansion through order Op∗
(
δ−2
NT

)
, which means its remainder is of order Op∗

(
δ−4
NT

)
.

Remark 5 Lemma B.3 only requires Conditions A* and B*. Condition C* is not used here. Note

that Ṽ ∗11 = Ik1 and Ṽ ∗22 = Ik2, which explains the differences between the asymptotic expansions of R̂

and R̂∗ (in particular, we do not need to pre-multiply Ψ̂∗ by Ṽ ∗−1
11 ).

Since the bootstrap test statistic is defined as ξ̂∗ (kc) ≡ tr
(

Λ̂∗1/2
)

, where Λ̂∗ = diag
(
ρ̂∗2l : l = 1, . . . , kc

)
contains the first kc eigenvalues of R̂∗, our next result provides an asymptotic of Λ̂∗1/2, from which we

obtain an asymptotic expansion of ξ̂∗ (kc) ≡
∑kc

l=1 ρ̂
∗
l .

Lemma B.4 Suppose Conditions A* and B* hold. Under Assumption 1,

(a) Λ̂∗1/2 = Ikc + 1
2 Û
∗−1Ψ̂∗ccÛ

∗ + Op∗
(
δ−4
NT

)
, where Ψ̂∗cc is upper-left kc × kc block of the matrix Ψ̂∗

defined in Lemma B.3 and Û∗ is a kc × kc matrix.

(b) tr
(

Λ̂∗1/2
)

=
∑kc

l=1 ρ̂
∗
l = kc + 1

2 tr
(

Ψ̂∗cc

)
+Op∗

(
δ−4
NT

)
.

Lemma B.4 is the bootstrap analogue of Lemma B.4 of AGGR(2019) when N and T satisfy the

rate conditions of Assumption 1. In contrast to Lemma B.4 in AGGR(2019), which only holds under

the null hypothesis, Lemma B.4 holds under both the null and the alternative hypothesis.

Next, we provide an asymptotic expansion of Ψ̂∗cc through order Op∗
(
δ−2
NT

)
(i.e. with remainder of

orderOp∗
(
δ−4
NT

)
). This expansion is based on the asymptotic expansion of 1

T

∑T
t=1

(
f̂∗jt −H∗j f̃jt

)(
f̂∗kt −H∗k f̂kt

)′
given in Lemma B.2. This result is in Appendix B.2 and it requires the strengthening of Conditions

A* and B* with Condition C*. We can then obtain the following result using the definition of Ψ̂∗cc

given in Lemma B.3.

Recall that U∗t ≡ µNu
∗(c)
1t − u

∗(c)
2t , where u

∗(c)
jt denotes the kc× 1 vector containing the first kc rows

of u∗jt ≡
(

Λ̃′jΛ̃j

Nj

)
Λ̃′jε
∗
jt√
Nj

.

Lemma B.5 Suppose Conditions A*, B* and C* hold and assume that Assumption 1 is verified with

N = N2 < N1. Defining U∗t ≡ µNu
∗(c)
1t − u

∗(c)
2t , we have that Ψ̂∗cc = − 1

TN

∑T
t=1 U∗t U∗′t +Op∗

(
δ−4
NT

)
.

Proof of Lemma B.3. We follow the proof of Lemma B.2 of AGGR(2019), but only consider a

first order asymptotic expansion of R̂∗. In particular, we write

R̂∗ = V̂ ∗−1
11 V̂ ∗12V̂

∗−1
22 V̂ ∗21 = (Ik1 + V̈ ∗−1

11 Ẍ∗11)−1V̈ ∗−1
11 (V̈ ∗12 + Ẍ∗12)(Ik2 + V̈ ∗−1

22 Ẍ∗22)−1V̈ ∗−1
22 (V̈ ∗21 + Ẍ∗21),
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where we used V̂ ∗jj = V̈ ∗jj(Ikj + V̈ ∗−1
jj Ẍ∗jj). We then use the expansion (I −X)−1 = I +X +O

(
X2
)

to

obtain (Ikj + V̈ ∗−1
jj Ẍ∗jj)

−1 = Ikj − V̈
∗−1
jj Ẍ∗jj +Op∗

(
δ−4
NT

)
, where only terms that are linear in Ẍ∗jk are

larger than Op∗
(
δ−4
NT

)
. Terms involving products or squares of Ẍ∗jk are of order Op∗

(
δ−4
NT

)
because

we can show that Ẍ∗jk is of order Op∗
(
δ−2
NT

)
using Lemma B.3 of GP(2014).

Proof of Lemma B.4. Part (a): We follow closely the proof of Lemma B.4 of AGGR(2019),

but rely on Assumption 1 and the following key features of the bootstrap DGP to simplify their proof.

First, note that the eigenvector-eigenvalue problem associated with R̂∗ is R̂∗Ŵ ∗ = Ŵ ∗Λ̂∗, where

Λ̂∗ = diag
(
ρ̂∗2l : l = 1, . . . , kc

)
. We can replace R̂∗ from its asymptotic expansion in Lemma B.3:[(

H∗′1

)−1
(
R̃∗ + Ψ̂∗

)
H∗′1 +Op∗

(
δ−4
NT

)]
Ŵ ∗ = Ŵ ∗Λ̂∗,

where we note that Ṽ ∗−1
11 = Ik1 by construction. Pre-multiplying this equation by H∗′1 gives(

R̃∗ + Ψ̂∗
)
H∗′1 Ŵ

∗︸ ︷︷ ︸
=W̃ ∗1

= H∗′1 Ŵ︸ ︷︷ ︸
=W̃ ∗1

Λ̂∗ +Op
(
δ−4
NT

)
.

Note that

R̃∗ =

(
Ikc 0

0 R̃∗ss

)
,

where R̃∗ss ≡ Σ̃∗12Σ̃∗21, with Σ̃∗12 ≡ T−1
∑T

t=1 f̂
s
1tf̂

s′
2t = Σ̃∗′21. This follows by the definition of R̃∗ ≡

Ṽ ∗−1
11 Ṽ ∗12Ṽ

∗−1
22 Ṽ ∗21 and the fact that Ṽ ∗jk ≡ T−1

∑T
t=1 f̃jtf̃

′
kt, where f̃jt ≡

(
f̂ c′t , f̂

s′
jt

)′
for j = 1, 2, with

f̂ ct = Ŵ ′f̂1t and f̂sjt as defined in Definition 2 of AGGR(2019). As argued by AGGR(2019) (specifically

their p. 1271),

T−1
T∑
t=1

f̂ ct f̂
c′
t = Ikc , T−1

T∑
t=1

f̂ ct f̂
s′
jt = 0, and T−1

T∑
t=1

f̂sjtf̂
s′
jt = Iksj ,

which implies that for j = 1, 2,

Ṽ ∗jj ≡ T−1
T∑
t=1

f̃jtf̃
′
jt =

(
Ikc 0

0 Iksj

)
= Ikj .

Compared to the matrix R̃ defined in Lemma B.3 of AGGR(2019), here R̃∗cs, the upper-right block

of R̃∗, is 0 due to the orthogonality between f̂ ct and f̂sjt for both j = 1, 2. This in turn simplifies

the form of R̃∗ss as compared to R̃ss in AGGR(2019). Importantly, the fact that R̃∗ is block diagonal

implies that its first kc eigenvalues are all equal to 1 (since they correspond to the eigenvalues of Ikc),

whereas its remaining ks1 eigenvalues are those of R̃∗ss, which can be shown to be all smaller than one.

This can be seen when fs1t and fs2t are both scalars, since then R̃∗ss = Φ̂2, where Φ̂ = T−1
∑T

t=1 f̂
s
1tf̂

s
2t

is the correlation between the two group specific factors. Moreover, the eigenvectors associated with

the first kc eigenvalues of R̃∗ are spanned by the columns of the matrix Ec ≡ [Ikc , 0
′]′. Thus, letting

Es ≡
(
0′, Ik1−ks1

)
, and following AGGR(2019), we can decompose the eigenvector and eigenvalue
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matrices of R̂∗ as

W̃ ∗1 = EcÛ
∗ + Esα̂

∗ and Λ̂∗ = Ikc + M̂∗.

Following AGGR(2019), by Lemma B.3, α̂∗ and M̂∗ converge to zero at rate Op∗
(
δ−2
NT

)
. Thus,

replacing W̃ ∗1 and Λ̂∗ into the eigenvector-eigenvalue equation for R̂∗ gives:(
R̃∗ + Ψ̂∗

)(
EcÛ

∗ + Esα̂
∗
)

=
(
EcÛ

∗ + Esα̂
∗
)(

Ikc + M̂∗
)

+Op∗
(
δ−4
NT

)
, and

R̃∗EcÛ
∗ + Ψ̂∗EcÛ

∗ + R̃∗Esα̂
∗ + Ψ̂∗Esα̂

∗ = EcÛ
∗ + EcÛ

∗M̂∗ + Esα̂
∗ + Esα̂

∗M̂∗ +Op
(
δ−4
NT

)
.

Using the fact that R̃∗Ec = Ec and that Ψ̂∗Esα̂
∗ and Esα̂

∗M̂∗ are of order Op∗
(
δ−4
NT

)
implies that

Ψ̂∗EcÛ
∗ + R̃∗Esα̂

∗ = EcÛ
∗M̂∗ + Esα̂

∗ +Op∗
(
δ−4
NT

)
. (13)

Pre-multiplying this equation (13) by E′c gives

E′cR̃
∗Es︸ ︷︷ ︸

≡R̃∗cs=0

α̂∗ + E′cΨ̂
∗Ec︸ ︷︷ ︸

≡Ψ̂∗cc

Û∗ = E′cEc︸ ︷︷ ︸
≡Ikc

Û∗M̂∗ + E′cEs︸ ︷︷ ︸
=0

α̂∗ +Op∗
(
δ−4
NT

)
,

from which we obtain

M̂∗ = Û∗−1Ψ̂∗ccÛ
∗ +Op∗

(
δ−4
NT

)
. (14)

Expansion (14) is the bootstrap analogue of equation (C.62) in AGGR(2019)’s Online Appendix (proof

of their Lemma B.4), where we have used the facts that R̃∗cs = 0 and Σ̃∗cc ≡ T−1
∑T

t=1 f̂
c
t f̂

c′
t = Ikc to

simplify the expansion in the bootstrap world. Equation (14) implies that

Λ̂∗ = Ikc + M̂∗ = Ikc + Û∗−1Ψ̂∗ccÛ
∗ +Op∗

(
δ−4
NT

)
,

from which it follows that

Λ̂∗1/2 = Ikc +
1

2
Û∗−1Ψ̂∗ccÛ

∗ +Op∗
(
δ−4
NT

)
,

by using the expansion (I + X)1/2 = I + 1
2X + Op

(
X2
)

with X = M̂∗. Part (b): This follows by

taking the trace of Λ̂∗1/2 and using the properties of the trace operator.

Proof of Lemma B.5. We replace Ψ̂∗cc with the expression from Lemma B.3 and use Lemma B.5.

In particular, recall that Ψ̂∗ is defined as

Ψ̂∗ ≡ −X̂∗11R̃
∗ + X̂∗12B̃

∗ + B̃∗′X̂∗21 − B̃∗′X̂∗22B̃
∗,

where B̃∗ ≡ Ṽ ∗−1
22 Ṽ ∗21 = Ṽ ∗21 since Ṽ ∗22 = Ik2 , and X̂∗jk is as defined in Lemma B.3. Since the bootstrap

DGP for each panel generates bootstrap observations on Y ∗j using f̃jt =
(
f̂ c′t , f̂

s′
jt

)′
, we can show that

R̃∗ =

(
Ikc 0

0 R̃∗ss

)
and B̃∗ =

(
Ikc 0

0 Σ̃∗21

)
,

where R̃∗ss = Σ̃∗12Σ̃∗21, where Σ̃∗12 ≡ T−1
∑T

t=1 f̂
s
1tf̂

s′
2t = Σ̃∗′21. Thus, the upper-left kc × kc block Ψ̂∗cc is
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equal to

Ψ̂∗cc = −X̂∗11,cc + X̂∗12,cc + X̂∗21,cc − X̂∗22,cc,

as argued by AGGR(2019) (see their equation (C.69) in the Online Appendix). Given the expressions

of X̂∗jk in Lemma B.3 and the fact that f̃jt =
(
f̂ c′t , f̂

s′
jt

)′
, we can then use the same arguments of

AGGR(2019) to rewrite the expression of Ψ̂∗cc as

Ψ̂∗cc = − 1

T

T∑
t=1

(
ψ
∗(c)
1t − ψ

∗(c)
2t

)(
ψ
∗(c)
1t − ψ

∗(c)
2t

)′
= −

{
1

T

T∑
t=1

ψ
∗(c)
1t ψ

∗(c)′
1t − 1

T

T∑
t=1

ψ
∗(c)
1t ψ

∗(c)′
2t − 1

T

T∑
t=1

ψ
∗(c)
2t ψ

∗(c)′
1t +

1

T

T∑
t=1

ψ
∗(c)
2t ψ

∗(c)′
2t

}

where ψ
∗(c)
jt ψ

∗(c)′
kt denotes the upper-left kc×kc block of the matrix ψ∗jtψ

∗′
kt, where ψ∗jt ≡ H

∗−1
j

(
f̂∗jt −H∗j f̃jt

)
.

For any j, k ∈ {1, 2}, we can write

1

T

T∑
t=1

ψ∗jtψ
∗′
kt = H∗−1

j

1

T

T∑
t=1

(
f̂∗jt −H∗j f̃jt

)(
f̂∗kt −H∗k f̃kt

)′ (
H∗′k
)−1

.

The desired result follows by Lemma B.2, noting that µN =
√
N2/N1, where N ≡ min (N1, N2) = N2

(without loss of generality), which implies the definition of U∗t ≡ µNu
∗(c)
1t − u

∗(c)
2t .

Proof of Lemma 3.1. This follows from Lemmas B.3, B.4 and B.5 under Conditions A*-C*.

Proof of Theorem 3.1. The asymptotic Gaussianity of the bootstrap test statistic follows from

Lemma 3.1 when we add Conditions D* and E*. To see that this implies that the bootstrap p-value

converges in distribution to a uniform distribution under the null hypothesis, note that

p∗ ≡ P ∗
(
N
√
T
(
ξ̂∗ (kc)− kc

)
≤ N
√
T
(
ξ̂ (kc)− kc

))
= P ∗

(
Ω
−1/2
U N

√
T

(
ξ̂∗ (kc)− kc +

B
2N

)
≤ Ω

−1/2
U N

√
T

(
ξ̂ (kc)− kc +

B
2N

))
= Φ

(
Ω
−1/2
U N

√
T

(
ξ̂ (kc)− kc +

B
2N

))
+ op (1) .

Since Ω
−1/2
U N

√
T
(
ξ̂ (kc)− kc + B

2N

)
d→ N (0, 1) under the null hypothesis, the random variable inside

Φ (·) in can be written as Φ−1
(
U[0,1]

)
, implying that p∗

d→ Φ
(
Φ−1

(
U[0,1]

))
= U[0,1].

Proof of Proposition 3.1. We can rewrite p∗ as follows

p∗ = P ∗
(
N
√
T (ξ̂∗(kc)− kc +

B∗

2N
) ≤ N

√
T (ξ̂(kc)− kc +

B∗

2N
) +
√
T (B∗ − B)

)
(1)
= P ∗

(
− 1

2
√
T

T∑
t=1

Z∗N,t ≤ N
√
T (ξ̂(kc)− kc +

B
2N

) +
√
T (B∗ − B)

)
+ op(1)

(2)
= P ∗

(
− 1

2
√
T

T∑
t=1

Z∗N,t ≤ −N
√
Tc1 +N1−ε√Tc2

)
+ op(1),

where c1 and c2 are positive constants and ε is also positive. Note that (1) follows by Lemma 3.1
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under Conditions A*- C*, whereas (2) follows by using the fact that under H1, ξ̂(k
c) − kc + B

2N =∑kc

l=1 ρl− kc + op(1) (since B = Op(1) and ρ̂l →p ρl), where ρl denotes the true canonical correlations.

Since
∑kc

l=1 ρl−kc < 0 when there are less than kc common factors, N
√
T (ξ̂(kc)−kc+ B

2N ) ≤ −N
√
Tc1

for c1 > 0 under H1, as argued by AGGR(2019). Finally, we can bound
√
T (B∗ − B) by

√
TN1−εc2

for some positive constant c2 by using Condition F* and the fact that B∗ and B are positive. Thus,
√
T (B∗ − B) is asymptotically negligible with respect to −N

√
Tc1. This together with the fact that

1
2
√
T

∑T
t=1Z∗N,t is Op(1) as assumed in Condition F* implies that p∗ →p 0.

C Proof of wild bootstrap results in Section 4.1

In this appendix, we first provide three auxiliary lemmas, followed by their proofs. Then, we prove

Theorem 4.1.

Lemma C.1 Suppose Assumptions 1-4 hold. If either (1) {f ct }, {fsjt} and {εj,it} are mutually inde-

pendent and for some p ≥ 2, E|εj,it|2p ≤ M < ∞ and E‖fjt‖2p ≤ M < ∞, or (2) for some p ≥ 2,

E|εj,it|4p ≤M <∞ and E‖fjt‖4p ≤M <∞, it follows that

(i) 1
T

∑T
t=1 ‖f̂ ct − f ct ‖p = Op(1), and 1

Nj

∑Nj

i=1 ‖λ̂cj,i − λcj,i‖p = Op(1);

(ii) 1
T

∑T
t=1 ‖f̂sjt −Hs

j f
s
jt‖p = Op(1) and 1

Nj

∑Nj

i=1 ‖λ̂sj,i − (Hs
j )−1′λsj,i‖p = Op(1);

(iii) 1
NjT

∑Nj

i=1

∑T
t=1 |ε̃j,it|p = Op(1),

where Hs
j = (Vsj )−1 F̂

s′
j F

s
j

T

Λs′
j Λs

j

Nj
and Vsj is the ksj × ksj diagonal matrix containing the ksj largest

eigenvalues of ΞjΞ
′
j/NjT on the main diagonal in descending order.

Lemma C.2 Assume that Assumptions 1-6 strengthened by Assumption WB1 and WB2 hold. Then

Lemma 3.1 follows for Algorithm 1.

Remark 6 In Lemma C.2, we verify that the bootstrap method generated by Algorithm 1 satisfies

Conditions A* through C*. To verify these conditions, we use Lemma C.1 which is valid under H0

and H1. Therefore, Lemma C.2 is satisfied regardless of the fact that either H0 or H1 is true.

In the following Lemma C.3, we obtain the uniform expansions of the group common factors, factor

loadings, group specific factors, and group specific factor loadings up to order op(T
−1/2) under H0 to

verify Condition D*. Note that Lemma C.3 is only valid under H0.

Lemma C.3 Assume that Assumptions 1-5 hold and H0 is true. Then, for j = 1, 2, we have the

following:

(i) f̂ ct = Hc(f ct + 1√
N1
u

(c)
1t ) + op(T

−1/2);
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(ii) λ̂cj,i = (Hc)−1′λcj,i +Hc 1
T

∑T
t=1 f

c
t εj,it +Hc 1

T

∑T
t=1 f

c
t f

s′
jtλ

s
j,i + op(T

−1/2);

(iii) f̂ sjt = H̃s
j (f̃sjt + 1√

Nj
u

(s)
jt ) + op(T

−1/2);

(iv) λ̂sj,i = (H̃s
j )−1′λsj,i + H̃s

j
1
T

∑T
t=1 f̃

s
jtεj,it + op(T

−1/2),

where f̃ sjt ≡ fsjt − Σ̃j,cΣ̃
−1
cc f

c
t and H̃s

j = (Vsj )−1 F̂
s′
j F̃

s
j

T

Λs′
j Λs

j

Nj
and Vsj is defined in Lemma C.1.

Proof of Lemma C.1. Part (i): Recall that f̂ ct = Ŵ ′f̂1t, where Ŵ is s k1 × kc matrix

collecting the eigenvectors of R̂ associated to the kc largest eigenvalues and Ŵ ′Ŵ = Ikc . By following

Proposition 1 in AGGR(2019), f ct = W ′f1t, where W is a k1×kc matrix of eigenvectors of R associated

to the kc largest eigenvalues. Then, by adding and subtracting appropriately, we can write f̂ ct − f ct =

Ŵ ′(f̂1t −H1f1t) + (H ′1Ŵ −W )′f1t. By the cr-inequality, we can bound part (i) as follows,

1

T

T∑
t=1

∥∥∥f̂ ct − f ct ∥∥∥p ≤ 2p−1

∥∥∥Ŵ∥∥∥p︸ ︷︷ ︸
=Op(1)

1

T

T∑
t=1

∥∥∥f̂1t −H1f1t

∥∥∥p +
∥∥∥W̃1 −W

∥∥∥p︸ ︷︷ ︸
=Op(1)

1

T

T∑
t=1

‖f1t‖p

 ,

where we let W̃1 = H ′1Ŵ . It is sufficient to show that 1
T

∑T
t=1

∥∥∥f̂1t −H1f1t

∥∥∥p = Op(1). By following

the arguments in GP(2014) (i.e., their Lemma C.1-(i)), given that E|εj,it|2p ≤M <∞ and E‖fjt‖2p ≤
M <∞, we have 1

T

∑T
t=1

∥∥∥f̂1t −H1f1t

∥∥∥p = Op(1). If we assume that {fjt} and {εj,it} are independent,

then E‖fjt‖p ≤ M < ∞ and E|εj,it|2p ≤ M < ∞ are sufficient. Next, we show that 1
Nj

∑Nj

i=1 ‖λ̂cj,i −
λcj,i‖p = Op(1). Since Λ̂cj = 1

T Y
′
j F̂

c and Yj = F cΛc′j + F sj Λs′j + εj , we can write Λ̂cj as follows,

Λ̂cj =
1

T
Y ′j F̂

c =
1

T
(F cΛc′j + F sj Λs′j + εj)

′F̂ c

=
1

T
ΛcjF

c′F̂ c +
1

T
ΛsjF

s′
j F̂

c +
1

T
ε′jF̂

c

= Λcj
F̂ c′F̂ c

T︸ ︷︷ ︸
=Ikc

− 1

T
Λcj(F̂

c − F c)′F̂ c +
1

T
ΛsjF

s′
j (F̂ c − F c) +

1

T
ΛsjF

s′
j F

c +
1

T
ε′j(F̂

c − F c) +
1

T
ε′jF

c.

Then, λ̂cj,i− λcj,i = − 1
T F̂

c′(F̂ c−F c)λcj,i + 1
T (F̂ c−F c)′F sj λsj,i + 1

T F
c′F sj λ

s
j,i + 1

T (F̂ c−F c)′εj,i + 1
T F

c′εj,i.

We apply the cr-inequality and show that each term is Op(1). In particular,

1

Nj

Nj∑
i=1

∥∥∥λ̂cj,i − λcj,i∥∥∥p ≤ 5p−1

 1

Nj

Nj∑
i=1

∥∥∥∥ 1

T
F̂ c′(F̂ c − F c)λcj,i

∥∥∥∥p +
1

Nj

Nj∑
i=1

∥∥∥∥ 1

T
(F̂ c − F c)′F sj λsj,i

∥∥∥∥p

+
1

Nj

Nj∑
i=1

∥∥∥∥ 1

T
F c′F sj λ

s
j,i

∥∥∥∥p +
1

Nj

Nj∑
i=1

∥∥∥∥ 1

T
(F̂ c − F c)′εj,i

∥∥∥∥p +
1

Nj

Nj∑
i=1

∥∥∥∥ 1

T
F c′εj,i

∥∥∥∥p
 .

To see that the first term is bounded, note that

1

Nj

Nj∑
i=1

∥∥∥T−1F̂ c′(F̂ c − F cHc′)λcj,i

∥∥∥p ≤ (∥∥∥T−1/2F̂ c
∥∥∥p)︸ ︷︷ ︸

=(kc)p/2

(∥∥∥T−1/2(F̂ c − F cHc′)
∥∥∥p)︸ ︷︷ ︸

=Op(1)

1

Nj

Nj∑
i=1

∥∥λcj,i∥∥p︸ ︷︷ ︸
=O(1)

= Op(1).

50



Similarly, for the second term,

1

Nj

Nj∑
i=1

∥∥∥∥ 1

T
(F̂ c − F cHc′)′F sj λ

s
j,i

∥∥∥∥p ≤ ∥∥∥T−1/2F sj

∥∥∥p ∥∥∥T−1/2(F̂ c − F cHc′)
∥∥∥p︸ ︷︷ ︸

=Op(1)

1

Nj

Nj∑
i=1

‖λsj,i‖p︸ ︷︷ ︸
=O(1)

= Op(1),

where we can show
∥∥∥T−1/2F sj

∥∥∥p =
(

1
T ‖F

s
j ‖2
)p/2

≤ 1
T

∑T
t=1 ‖fsjt‖p ≤M , provided E‖fsjt‖p ≤M <∞.

We can bound the third term as 1
Nj

∑Nj

i=1

∥∥∥ 1
T F

c′F sj λ
s
j,i

∥∥∥p ≤ 1
Nj

∑Nj

i=1 ‖λsj,i‖p
∥∥∥ 1
T F

c′F sj

∥∥∥p, ignoring

‖Hc‖p = ‖Û‖p = Op(1). Given ‖λsj,i‖p ≤ M , it suffices to show that
∥∥∥ 1
T F

c′F sj

∥∥∥p = Op(1). By

Markov’s inequality, this follows from E
∥∥∥ 1
T

∑T
t=1 f

c
t f

s′
jt

∥∥∥p ≤ 1
T

∑T
t=1E‖f ct fs′jt‖p, which is bounded

given E‖fjt‖2p ≤ M < ∞, if f ct and f sjt are not independent (otherwise, E‖fjt‖p ≤ M < ∞
is sufficient). The fourth term can be bounded as 1

Nj

∑Nj

i=1

∥∥∥ 1
T (F̂ c − F cHc′)′εj,i

∥∥∥p ≤ ‖T−1/2(F̂ c −

F cHc′)‖p 1
Nj

∑Nj

i=1 ‖T−1/2εj,i‖p = Op(1), where

1

Nj

Nj∑
i=1

‖T−1/2εj,i‖p =
1

Nj

Nj∑
i=1

(∥∥∥T−1/2εj,i

∥∥∥2
)p/2

=
1

Nj

Nj∑
i=1

(
1

T

T∑
t=1

ε2
j,it

)p/2
≤ 1

NjT

Nj∑
i=1

T∑
t=1

|εj,it|p = Op(1),

given E|εj,it|p ≤ M < ∞. Similarly, we can bound the last term as 1
Nj

∑Nj

i=1 ‖T−1F c′εj,i‖p =

‖Hc‖p
(

1
Nj

∑Nj

i=1 ‖T−1/2εj,i‖p
) (
‖T−1/2F c‖p

)
= Op(1), given E|εj,it|p ≤ M < ∞ and E‖f ct ‖p ≤ M <

∞.

Part (ii): Note that f̂sjt is the principal component estimator from Ξjt = yjt− Λ̂cj f̂
c
t . By using the

fact that yjt = Λcjf
c
t + Λsjf

s
jt + εjt, we can write Ξjt as follows.

Ξjt = yjt − Λcjf
c
t + Λcjf

c
t − Λ̂cj f̂

c
t = Λsjf

s
jt + εjt + (Λcjf

c
t − Λ̂cj f̂

c
t )︸ ︷︷ ︸

≡ejt

= Λsjf
s
jt + ejt.

Then, using the identity from the proof of Theorem 1 in Bai (2003), we have

f̂sjt −Hs
j f

s
jt = (Vsj )−1

(
1

T

T∑
l=1

f̂sjlψ
s
j,lt +

1

T

T∑
l=1

f̂sjlη
s
j,lt +

1

T

T∑
l=1

f̂sjlξ
s
j,lt

)
,

where Vsj is the ksj × ksj matrix of ksj eigenvalues of ΞjΞ
′
j/(TNj) in its diagonal elements and ψsj,lt =

1
Nj

∑Nj

i=1 ej,ilej,it, η
s
j,lt = 1

Nj

∑Nj

i=1 λ
s′
j,if

s
jlej,it, and ξsj,lt = 1

Nj

∑Nj

i=1 λ
s′
j,if

s
jtej,il. Using this identity and the

cr-inequality, we have

1

T

T∑
t=1

‖f̂sjt −Hs
j f

s
jt‖p ≤ 3p−1‖(Vsj )−1‖p

(
1

T

T∑
t=1

ast +
1

T

T∑
t=1

bst +
1

T

T∑
t=1

cst

)
,

where ast = 1
T p

∥∥∥∑T
l=1 f̂

s
jlψ

s
j,lt

∥∥∥p, bst = 1
T p

∥∥∥∑T
l=1 f̂

s
jlη

s
j,lt

∥∥∥p, and cst = 1
T p

∥∥∥∑T
l=1 f̂

s
jlξ

s
j,lt

∥∥∥p. Let χj,lt

denote either ψsj,lt, η
s
j,lt, or ξsj,lt. Then, we can show

∥∥∥∑T
l=1 f̂

s
jlχj,lt

∥∥∥p =

(∥∥∥∑T
l=1 f̂

s
jlχj,lt

∥∥∥2
)1/2

≤
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(∑T
l=1 ‖f̂sjl‖2

∑T
l=1 |χj,lt|2

)p/2
. Under this inequality, we can show that

1

T

T∑
t=1

1

T p

∥∥∥∥∥
T∑
l=1

f̂sjlχj,lt

∥∥∥∥∥
p

≤ (ksj )
p/2 1

T

T∑
t=1

(
1

T

T∑
l=1

|χj,lt|2
)p/2

≤ (ksj )
p/2 1

T 2

T∑
t=1

T∑
l=1

|χj,lt|p,

where we use the fact that 1
T

∑T
t=1 ‖f̂sjt‖2 = ksj . It suffices to show that 1

T 2

∑T
t=1

∑T
l=1 |χj,lt|p = Op(1).

Starting with χj,lt = ψsj,lt, we can write as

1

T 2

T∑
t=1

T∑
l=1

∣∣∣∣∣∣ 1

Nj

Nj∑
i=1

ej,ilej,it

∣∣∣∣∣∣
p

≤ 1

T 2Nj

T∑
t=1

T∑
l=1

Nj∑
i=1

|ej,ilej,it|p

≤ 4p−1 1

T 2Nj

T∑
t=1

T∑
l=1

Nj∑
i=1

(|εj,itεj,il|p + |εj,itĉj,il|p + |ĉj,itεj,il|p + |ĉj,itĉj,il|p) ,

where we let ej,it = εj,it + ĉj,it, with ĉj,it ≡ λc′j,if
c
t − λ̂c′j,if̂ ct . Using the cr-inequality, we can show that

1
T 2Nj

∑T
t=1

∑T
l=1

∑Nj

i=1 |εj,itεj,il|
p ≤ 1

T 2Nj

∑T
t=1

∑Nj

i=1 |εj,it|
2p = Op(1) given that E|εj,it|2p ≤ M < ∞.

For the second term, it suffices to show that 1
NjT

∑Nj

i=1

∑T
t=1 |ĉj,it|2p = Op(1), because 1

T 2Nj

∑T
t=1

∑T
l=1

∑Nj

i=1 |εj,itĉj,il|
p ≤(

1
NjT

∑Nj

i=1

∑T
l=1 |εj,il|2p

)1/2 (
1

NjT

∑Nj

i=1

∑T
l=1 |ĉj,it|2p

)1/2
by using the cr- and Cauchy-Schwarz in-

equalities. Using the definition of ĉj,it, we have

1

NjT

Nj∑
i=1

T∑
l=1

|ĉj,it|2p =
1

NjT

Nj∑
i=1

T∑
l=1

∣∣∣−(λ̂cj,i − λcj,i)′f̂ ct − λc′j,i(f̂ ct − f ct )
∣∣∣2p

≤ 22p−1

 1

NjT

Nj∑
i=1

T∑
l=1

∣∣∣(λ̂cj,i − λcj,i)′f̂ ct ∣∣∣2p +
1

NjT

Nj∑
i=1

T∑
l=1

∣∣∣λc′j,i(f̂ ct − f ct )
∣∣∣2p
 .

To show that this term is Op(1), it suffices that 1
Nj

∑Nj

i=1 ‖λ̂cj,i − λcj,i‖2p = Op(1), and 1
T

∑T
t=1 ‖f̂ ct −

f ct ‖2p = Op(1), given that ‖λcj,i‖2p ≤ M . Assuming f ct and fsjt are independent, provided that

E‖fjt‖2p ≤ M and ‖λsj,i‖2p ≤ M , we have 1
Nj

∑Nj

i=1 ‖λ̂cj,i − λcj,i‖2p = Op(1) (otherwise, we need

E‖fjt‖4p ≤M). Assuming that fjt and εj,it are independent, given that ‖λcj,i‖2p ≤M , E|εj,it|2p ≤M
and E‖fjt‖2p ≤ M , we have 1

T

∑T
t=1 ‖f̂ ct − f ct ‖2p = Op(1) (otherwise, we need E|εj,it|4p ≤ M and

E‖fjt‖4p ≤ M). The remaining terms can be handled similarly by using 1
NjT

∑Nj

i=1

∑T
t=1 |εj,it|2p =

Op(1) and 1
NjT

∑Nj

i=1

∑T
t=1 |ĉj,it|2p = Op(1). For instance, letting χj,lt = ηsj,lt and assuming that fjt
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and εj,it are independent, we have that

1

T 2

T∑
t=1

T∑
l=1

∣∣ηsj,lt∣∣p ≤ 1

NjT 2

T∑
t=1

T∑
l=1

Nj∑
i=1

∣∣λs′j,ifsjlej,it∣∣p
≤ 1

Nj

Nj∑
i=1

‖λsj,i‖p
(

1

T

T∑
t=1

|ej,it|p
)(

1

T

T∑
l=1

∥∥f sjl∥∥p
)

≤

 1

Nj

Nj∑
i=1

∥∥λsj,i∥∥2p

1/2 1

NjT

T∑
t=1

Nj∑
i=1

|ej,it|2p
1/2(

1

T

T∑
l=1

∥∥fsjl∥∥p
)
,

which is Op(1) by showing that 1
NjT

∑T
t=1

∑Nj

i=1 |ej,it|
2p = Op(1) given that ‖λsj,i‖2p ≤M and E‖f sjl‖ ≤

M . To show that 1
NjT

∑T
t=1

∑Nj

i=1 |ej,it|
2p = Op(1), it is sufficient to have 1

NjT

∑T
t=1

∑Nj

i=1 |εj,it|
2p =

Op(1) and 1
NjT

∑T
t=1

∑Nj

i=1 |ĉj,it|
2p = Op(1). We can use a similar argument when χj,lt = ξsj,lt.

Next, we show that 1
Nj

∑Nj

i=1 ‖λ̂sj,i − (Hs′
j )−1λsj,i‖p = Op(1). Note that Λ̂sj = 1

T Ξ′jF̂
s
j and Ξj =

F sj Λs′j + ej , where ej = εj + (F cΛc′j − F̂ cΛ̂c′j ). Then, we can write λ̂sj,i as follows,

λ̂sj,i =
F̂ s′j F

s
j

T
λsj,i +

F̂ s′j ej,i

T

=
F̂ s′j F

s
jH

s′
j

T
(Hs′

j )−1λsj,i +
F̂ s′j ej,i

T

= (Hs′
j )−1λsj,i −

F̂ s′j (F̂ sj − F sjHs′
j )

T
(Hs′

j )−1λsj,i + T−1(F̂ sj − F sjHs′
j )′ej,i + T−1Hs

jF
s′
j ej,i.

Under this identity and the cr-inequality, we can bound 1
Nj

∑Nj

i=1 ‖λ̂sj,i − (Hs′
j )−1λsj,i‖p by

3p−1

 1

Nj

Nj∑
i=1

‖T−1F̂ s′j (F̂ sj − F sjHs′
j )(Hs′

j )−1λsj,i‖p

+
1

Nj

Nj∑
i=1

‖T−1(F̂ sj − F sjHs′
j )′ej,i‖p +

1

Nj

Nj∑
i=1

‖T−1(F sjH
s′
j )′ej,i‖p

 .

The first term is Op(1) since ‖λsj,i‖p ≤M <∞ and

1

Nj

Nj∑
i=1

‖T−1F̂ s′j (F̂ sj−F sjHs′
j )(Hs′

j )−1λsj,i‖p ≤ ‖T−1/2F̂ sj ‖p‖T−1/2(F̂ sj−F sjHs′
j )‖p‖(Hs′

j )−1‖p
 1

Nj

Nj∑
i=1

‖λsj,i‖p
 .

For the second term, we have

1

Nj

Nj∑
i=1

‖T−1(F̂ sj − F sjHs′
j )′ej,i‖p ≤ ‖T−1/2(F̂ sj − F sjHs′

j )‖p︸ ︷︷ ︸
=Op(1)

 1

Nj

Nj∑
i=1

‖T−1/2ej,i‖p


︸ ︷︷ ︸
=Op(1)

= Op(1).
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Similarly, the third term can be bounded as

1

Nj

Nj∑
i=1

‖T−1(F sjH
s′
j )′ej,i‖p ≤ ‖T−1/2F sj ‖p︸ ︷︷ ︸

≤ 1
T

∑T
t=1 ‖fsjt‖p

=Op(1)

‖Hs
j ‖p

 1

Nj

Nj∑
i=1

‖T−1/2ej,i‖p


︸ ︷︷ ︸
=Op(1)

= Op(1),

given that E‖fsjt‖p ≤M <∞.

Part (iii): To show 1
NjT

∑Nj

i=1

∑T
t=1 |ε̃j,it|

p = Op(1), we first rewrite ε̃j,it as follows.

ε̃j,it = yj,it − λ̂c′j,if̂ ct − λ̂s′j,if̂sjt
= εj,it + (λc′j,if

c
t − λ̂c′j,if̂ ct ) + (λs′j,if

s
jt − λ̂s′j,if̂sjt)

= εj,it − λc′j,i(f̂ ct −Hcf ct )− (λ̂cj,i − (Hc)−1′λcj,i)
′f̂ ct − λs′j,i(Hs

j )−1(f̂sjt −Hs
j f

s
jt)− (λ̂sj,i − (Hs

j )−1′λsj,i)
′f̂sjt.

Using the identity above and the cr-inequality, we have

1

NjT

Nj∑
i=1

T∑
t=1

|ε̃j,it|p ≤ 5p−1

 1

NjT

Nj∑
i=1

T∑
t=1

|εj,it|p︸ ︷︷ ︸
≡(a)

+
1

NjT

Nj∑
i=1

T∑
t=1

∣∣∣λc′j,i(f̂ ct −Hcf ct )
∣∣∣p︸ ︷︷ ︸

≡(b)

+
1

NjT

Nj∑
i=1

T∑
t=1

∣∣∣(λ̂cj,i − (Hc)−1′λcj,i)
′f̂ ct

∣∣∣p︸ ︷︷ ︸
≡(c)

+
1

NjT

Nj∑
i=1

T∑
t=1

∣∣∣λs′j,i(Hs
j )−1(f̂sjt −Hs

j f
s
jt)
∣∣∣p︸ ︷︷ ︸

≡(d)

+
1

NjT

Nj∑
i=1

T∑
t=1

∣∣∣(λ̂sj,i − (Hs
j )−1′λsj,i)

′f̂sjt

∣∣∣p︸ ︷︷ ︸
≡(e)

 .

To end the proof, we show that (a) through (e) are Op(1). The fact that (a) is Op(1) follows from

E|εj,it|p ≤ M < ∞. The term (b) can be bounded by
(

1
Nj

∑Nj

i=1 ‖λcj,i‖p
)(

1
T

∑T
t=1 ‖f̂ ct −Hcf ct ‖p

)
=

Op(1) using part (i) and ‖λcj,i‖p ≤M . We can also bound the term (c) as

1

NjT

Nj∑
i=1

T∑
t=1

∣∣∣(λ̂cj,i − (Hc)−1′λcj,i)
′f̂ ct

∣∣∣p ≤
 1

Nj

Nj∑
i=1

‖λ̂cj,i − (Hc)−1′λcj,i‖p


︸ ︷︷ ︸
=Op(1) by part (ii)

(
1

T

T∑
t=1

‖f̂ ct ‖p
)
,

where

1

T

T∑
t=1

‖f̂ ct ‖p ≤ 2p−1


‖Hc‖p 1

T

T∑
t=1

‖f ct ‖p︸ ︷︷ ︸
=Op(1)

by E‖fct ‖≤M<∞

+
1

T

T∑
t=1

‖f̂ ct −Hcf ct ‖p︸ ︷︷ ︸
=Op(1) by part (i)


= Op(1).

54



The term (d) can be bounded by
(

1
Nj

∑Nj

i=1 ‖λsj,i‖p
)
‖(Hs

j )−1‖p
(

1
T

∑T
t=1 ‖f̂sjt −Hs

j f
s
jt‖p

)
= Op(1), by

part (i) and ‖λsj,i‖p ≤M <∞. Finally, the last term can be bounded as follows,

1

NjT

Nj∑
i=1

T∑
t=1

∣∣∣(λ̂sj,i − (Hs
j )−1′λsj,i)

′f̂sjt

∣∣∣p ≤
 1

Nj

Nj∑
i=1

‖λ̂sj,i − (Hs
j )−1′λsj,i‖p


︸ ︷︷ ︸

=Op(1) by part (ii)

(
1

T

T∑
s=1

‖f̂sjt‖p
)
,

where

1

T

T∑
t=1

‖f̂sjt‖p ≤ 2p−1

‖Hs
j ‖p

1

T

T∑
t=1

‖fsjt‖p︸ ︷︷ ︸
=Op(1)

+
1

T

T∑
t=1

‖f̂ sjt −Hs
j f

s
jt‖p︸ ︷︷ ︸

=Op(1) by part (ii)

 = Op(1).

Proof of Lemma C.2.

As argued in Remark 3, Condition A* - B* are verified for the wild bootstrap in GP(2014) (for

details, see their proof of Theorem 4.1). Therefore, we focus on Condition C*. Part (i): By Cauchy-

Schwarz inequality, we can show that

1

T

T∑
t=1

∥∥∥∥∥
T∑
s=1

f̃jsγ
∗
j,st

∥∥∥∥∥
2

≤

(
1

T

T∑
s=1

‖f̃js‖4
)1/2(

1

T

T∑
t=1

T∑
s=1

|γ∗j,st|4
)1/2

= Op(1).

Since we have 1
T

∑T
s=1

∥∥∥f̃js∥∥∥4
= Op(1), by applying Lemma C.1 with p = 4, it is sufficient to show

that 1
T

∑T
t=1

∑T
s=1 |γ∗j,st|4 = Op(1). Noting that γ∗j,st = 0 for s 6= t and using cr-inequality, we have

that

1

T

T∑
t=1

T∑
s=1

|γ∗j,st|4 =
1

T

T∑
t=1

|γ∗j,tt|4 =
1

T

T∑
t=1

∣∣∣∣∣∣ 1

Nj

Nj∑
i=1

ε̃2
j,it

∣∣∣∣∣∣
4

≤ 1

TNj

T∑
t=1

Nj∑
i=1

ε̃8
j,it = Op(1).

Lemma C.1 with p = 8 implies the last equality. Part (ii): By letting m∗jk,s ≡
∑T

t=1 γ
∗
j,st

Λ̃kε
∗′
kt√

Nk
, we can

write the sufficient condition for part (ii) to be Op(1) as follows.

E∗

∥∥∥∥∥ 1√
T

T∑
s=1

f̃jsm
∗′
jk,s

∥∥∥∥∥
2

= E∗

tr
( 1√

T

T∑
s=1

f̃jsm
∗′
jk,s

)′(
1√
T

T∑
l=1

f̃jlm
∗′
jk,l

)
= E∗

{
1

T

T∑
s=1

T∑
l=1

f̃ ′jsf̃jlm
∗′
jk,lm

∗
jk,s

}

=
1

T

T∑
s=1

T∑
l=1

f̃ ′jsf̃jlE
∗(m∗′jk,lm

∗
jk,s),

where

E∗(m∗′jk,lm
∗
jk,s) = E∗

[(
T∑

t1=1

γ∗j,lt1
ε∗′kt1Λ̃k√
Nk

)(
T∑

t2=1

γ∗j,st2
ε∗′kt2Λ̃k√
Nk

)]
=

1

Nk

T∑
t=1

Nk∑
i=1

λ̃′k,iλ̃k,iε̃
2
k,itγ

∗
j,ltγ

∗
j,st.
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By noting that γ∗j,st = 0 if s 6= t, it follows that

1

TNk

T∑
s=1

T∑
l=1

f̃ ′jsf̃jlE
∗(m∗′jk,lm

∗
jk,s) =

1

TNk

T∑
t=1

Nk∑
i=1

λ̃′k,iλ̃k,iε̃
2
k,itf̃

′
jtf̃jt(γ

∗
j,tt)

2

≤

 1

T

T∑
t=1

∥∥∥∥∥ 1

Nk

N∑
i=1

λ̃′k,iλ̃k,iε̃
2
k,it

∥∥∥∥∥
2
1/2(

1

T

T∑
t=1

|f̃ ′jtf̃jt(γ∗j,tt)2|2
)1/2

= Op(1),

where the first parenthesis can be bounded as

1

T

T∑
t=1

∥∥∥∥∥ 1

Nk

N∑
i=1

λ̃′k,iλ̃k,iε̃
2
k,it

∥∥∥∥∥
2

≤

(
1

TNk

T∑
t=1

Nk∑
i=1

ε̃4
k,it

)(
1

Nk

Nk∑
i=1

|λ̃′k,iλ̃k,i|2
)

≤

(
1

TNk

T∑
t=1

Nk∑
i=1

ε̃4
k,it

)(
1

Nk

Nk∑
i=1

‖λ̃k,i‖4
)

= Op(1),

given Lemma C.1 with p = 4. By Cauchy-Schwarz inequality, we can also bound the second parenthesis

as follows.

1

T

T∑
t=1

|f̃ ′jtf̃jt(γ∗j,tt)2|2 ≤

(
1

T

T∑
t=1

|f̃ ′jtf̃jt|4
)1/2(

1

T

T∑
t=1

(γ∗j,tt)
8

)1/2

≤

(
1

T

T∑
t=1

‖f̃jt‖8
)1/2

 1

NjT

T∑
t=1

Nj∑
i=1

ε̃16
j,it

1/2

= Op(1),

where we apply Lemma C.1 with p = 16 to obtain 1
NjT

∑T
t=1

∑Nj

i=1 ε̃
16
j,it = Op(1). Part (iii): We rewrite

the term as follows,

1

T

T∑
s=1

E∗

∥∥∥∥∥
T∑
t=1

γ∗j,st
ε∗′ktΛ̃k√
Nk

∥∥∥∥∥
2

=
1

T

T∑
s=1

E∗

( T∑
t=1

γ∗j,st
ε∗′ktΛ̃k√
Nk

)(
T∑
l=1

γ∗j,sl
ε∗′klΛ̃k√
Nk

)′
=

1

T

T∑
s=1

[
T∑
t=1

T∑
l=1

γ∗j,stγ
∗
j,slE

∗

(
1

Nk

Nk∑
i=1

Nk∑
m=1

λ̃′k,iλ̃k,mε
∗
k,itε

∗
k,ml

)]

=
1

T

T∑
s=1

T∑
t=1

γ∗j,stγ
∗
j,st

1

Nk

Nk∑
i=1

λ̃′k,iλ̃k,iε̃
2
k,it

=
1

T

T∑
t=1

(γ∗j,tt)
2

(
1

Nk

Nk∑
i=1

λ̃′k,iλ̃k,iε̃
2
k,it

)

≤

 1

T

T∑
t=1

|γ∗j,tt|4︸ ︷︷ ︸
=Op(1) by part(i)


1/2(

1

Nk

Nk∑
i=1

‖λ̃k,i‖4
)1/2(

1

TNk

T∑
t=1

Nk∑
i=1

ε̃4
k,it

)1/2

= Op(1),

where the third equality follows since E∗(ε∗k,itε
∗
k,ml) = ε̃k,itε̃k,mlE

∗(ηk,itηk,ml) = 0 if either i 6= m or

t 6= l and the fourth equality follows since γ∗j,st = 0 for s 6= t. To verify part (iv), a sufficient condition
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is that E∗
∥∥∥ 1√

T

∑T
s=1 f̃js

1
T

∑T
t=1

(
1√
N

∑N
i=1 λ̃k,iε

∗
k,it(ε

∗
j,isε

∗
j,it − E∗(ε∗j,isε∗j,it))

)∥∥∥2
= Op(1). To simplify

the notation, we define ψ∗1,jk,st = 1√
N

∑N
i=1 λ̃k,iε

∗
k,it(ε

∗
j,isε

∗
j,it − E∗(ε∗j,isε∗j,it)).

E∗

∥∥∥∥∥ 1√
T

T∑
s=1

f̃js
1

T

T∑
t=1

ψ∗1,jk,st

∥∥∥∥∥
2

=
1

T

T∑
s=1

T∑
l=1

f̃ ′jsf̃jl
1

T 2

T∑
t=1

T∑
q=1

E∗(ψ∗′1,jk,stψ
∗
1,jk,lq)

=
1

T

T∑
s=1

T∑
l=1

f̃ ′jsf̃jl
1

T 2

T∑
t=1

T∑
q=1

1

N

N∑
i1=1

N∑
i2=1

λ̃′k,i1 λ̃k,i2

E∗[ε∗k,i1sε
∗
k,i2q(ε

∗
j,i1sε

∗
j,i1t − E

∗(ε∗j,i1sε
∗
j,i1t))(ε

∗
j,i2lε

∗
j,i2q − E

∗(ε∗j,i2lε
∗
j,i2q))]︸ ︷︷ ︸

≡X1

.

We simplify the expression of X1 depending on the choices of j, k, i1, i2, and s, t, q, and l. To simplify

the notation, we let j = k and ignore the group notation (if j 6= k, under the group independence,

the proof is simpler). If i1 6= i2, we have X1 = ε̃3
i1t
ε̃3
i2l
E∗(η3

i1t
)E∗(η3

i1l
) = 0, when s = t 6= l = q or

s = t = l = q, since ηit ∼ i.i.d.N(0, 1). Therefore, we only need to consider the case of i1 = i2(= i).

For this case, X1 takes a non-zero value for three different cases: s = l 6= t 6= q (X1 = ε̃2
itε̃

2
iq ε̃

2
is),

s = l 6= t = q (X1 = 3ε̃4
itε̃

2
is), and s = l = t = q (X1 = 10ε̃6

it). Considering these cases and using

Cauchy-Schwarz inequality and cr-inequality, we can bound the above condition as follows.

E∗

∥∥∥∥∥ 1√
T

T∑
s=1

f̃s
1

T

T∑
t=1

ψ∗1,st

∥∥∥∥∥
2

≤M 1

T

T∑
s=1

f̃ ′sf̃s
1

T 2

T∑
t=1

T∑
q=1

1

N

N∑
i=1

λ̃′iλ̃iε̃
2
itε̃

2
isε̃

2
iq

≤M

(
1

T

T∑
s=1

|f̃ ′sf̃s|2
)1/2

 1

T

T∑
s=1

∣∣∣∣∣∣ 1

T 2

T∑
t=1

T∑
q=1

1

N

N∑
i=1

λ̃′iλ̃iε̃
2
itε̃

2
isε̃

2
iq

∣∣∣∣∣∣
21/2

≤M

(
1

T

T∑
s=1

‖f̃s‖4
)1/2(

1

NT

T∑
s=1

N∑
i=1

|λ̃′iλ̃iε̃2
is|2
)1/2

 1

N

N∑
i=1

∣∣∣∣∣ 1

T

T∑
t=1

ε̃2
it

∣∣∣∣∣
4
1/2

≤M

(
1

T

T∑
s=1

‖f̃s‖4
)1/2(

1

N

N∑
i=1

‖λ̃i‖4
)1/4(

1

NT

N∑
i=1

T∑
t=1

|ε̃is|8
)3/4

= Op(1).

By applying Lemma C.1 with p = 8, we can show that 1
T

∑T
s=1 ‖f̃s‖4 = Op(1), 1

N

∑N
i=1 ‖λ̃i‖4 = Op(1),

and 1
NT

∑N
i=1

∑T
t=1 |ε̃it|8 = Op(1). To prove the part (v), E∗

∥∥∥ 1√
T

∑T
s=1 f̃js

1√
T

∑T
t=1 ψ

∗
2,jk,st

∥∥∥2
= Op(1),

where ψ∗2,jk,st = 1√
NjNk

∑Nj

i1=1

∑Nk
i2 6=i1 λ̃k,i2ε

∗
k,i2t

(ε∗j,i1sε
∗
j,i1t
− E∗(ε∗j,i1sε

∗
j,i1t

)). We have that

E∗

∥∥∥∥∥ 1√
T

T∑
s=1

f̃js
1√
T

T∑
t=1

ψ∗2,jk,st

∥∥∥∥∥
2

=
1

T

T∑
s=1

T∑
l=1

f̃ ′jsf̃jl

(
1

T

T∑
t=1

E∗(ψ∗′2,jk,stψ
∗
2,jk,lq)

)
.

To show that this is Op(1), we expand the expression for E∗(ψ∗′2,jk,stψ
∗
2,jk,lq). Ignoring the group
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notation and considering the case where j = k, we can rewrite E∗(ψ∗2,jk,stψ
∗
2,jk,lq) as

E∗(ψ∗′2,jk,stψ
∗
2,jk,lq) =

1

N2

N∑
i1=1

N∑
i2 6=i1

N∑
i3=1

N∑
i4 6=i3

λ̃′i2 λ̃i4 E
∗[ε∗i2tε

∗
i4q(ε

∗
i1sε
∗
i1t − E

∗(ε∗i1sε
∗
i1t))(ε

∗
i3lε
∗
i3q − E

∗(ε∗i3lε
∗
i3q))]︸ ︷︷ ︸

≡X2

.

Since X2 is non-zero only if i1 = i3 6= i2 = i4, we consider X2 depending on s, t, q, and l and

i1 = i3 6= i2 = i4. When t = q 6= s = l, X2 = ε̃2
i2t
ε̃2
i1s
ε̃2
i1t

and when t = q = s = l, X2 = 2ε̃4
i1t

using the

fact that ηit ∼ i.i.d.N(0, 1). For the other combinations of s, t, q, and l, we have X2 = 0. Considering

this and putting the group notation back, we can bound E∗
∥∥∥ 1√

T

∑T
s=1 f̃js

1√
T

∑T
t=1 ψ

∗
2,jk,st

∥∥∥2
as follows.

E∗

∥∥∥∥∥ 1√
T

T∑
s=1

f̃js
1√
T

T∑
t=1

ψ∗2,jk,st

∥∥∥∥∥
2

≤M 1

T

T∑
s=1

f̃ ′jsf̃js
1

T

T∑
t=1

1

NjNk

Nj∑
i1=1

Nk∑
i2 6=i1

λ̃′k,i2 λ̃k,i2 ε̃
2
k,i2tε̃

2
j,i1sε̃

2
j,i1t

≤M

(
1

T

T∑
s=1

|f̃ ′jsf̃js|2
)1/2

 1

T

T∑
s=1

∣∣∣∣∣∣ 1

T

T∑
t=1

1

NjNk

Nj∑
i1=1

Nk∑
i2 6=i1

λ̃′k,i2 λ̃k,i2 ε̃
2
k,i2tε̃

2
j,i1sε̃

2
j,i1t

∣∣∣∣∣∣
21/2

≤M

(
1

T

T∑
s=1

‖f̃js‖4
)1/2

 1

T 2

T∑
s=1

T∑
t=1

∣∣∣∣∣∣ 1

Nj

Nj∑
i1=1

ε̃2
j,i1sε̃

2
j,i1t

∣∣∣∣∣∣
21/2 1

T

T∑
t=1

∣∣∣∣∣∣ 1

Nk

Nk∑
i2 6=i1

λ̃′k,i2 λ̃k,i2 ε̃
2
k,i2t

∣∣∣∣∣∣
21/2

≤M

(
1

T

T∑
s=1

‖f̃js‖4
)1/2

 1

NjT

Nj∑
i1=1

T∑
t=1

ε̃4
j,i1t

1/2 1

Nk

Nk∑
i2 6=i1

‖λ̃k,i2‖4
1/2 1

NkT

Nk∑
i2 6=i1

T∑
t=1

ε̃4
k,i2t

1/2

= Op(1).

Part (vi): As a sufficient condition, we can show that 1
T

∑T
s=1E

∗
∥∥∥ 1
T

∑T
t=1 ψ

∗
1,jk,st

∥∥∥2
= Op(1). Since

E∗
∥∥∥ 1
T

∑T
t=1 ψ

∗
1,jk,st

∥∥∥2
= 1

T 2

∑T
t=1

∑T
q=1E

∗(ψ∗′1,jk,stψ
∗
1,jk,sq), we focus on expanding E∗(ψ∗′1,jk,stψ

∗
1,jk,sq)

(ignoring the group notation) as follows.

E∗(ψ∗′1,jk,stψ
∗
1,jk,sq) =

1

N

N∑
i1=1

N∑
i2=1

λ̃′i2 λ̃i2 E
∗[ε∗i1tε

∗
i2t(ε

∗
i1sε
∗
i1t − E

∗(ε∗i1sε
∗
i1t))(ε

∗
i2sε
∗
i2q − E

∗(ε∗i2sε
∗
i2q))]︸ ︷︷ ︸

≡X3

≤M 1

N

N∑
i=1

λ̃′iλ̃iε̃
2
itε̃

2
iq ε̃

2
is.

If i1 6= i2, we have X3 = 0, since ηit ∼ i.i.d.N(0, 1). When i1 = i2, we have five cases to consider:

if s 6= t 6= q, X3 = ε̃2
itε̃

2
iq ε̃

2
is; if s = t 6= q, X3 = 2ε̃4

itε̃
2
iq ; if s = q 6= t, X3 = 2ε̃2

itε̃
4
is; if q = t 6= s,
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X3 = 3ε̃4
itε̃

2
is; and if s = t = q, X3 = 10ε̃6

it. Therefore,

1

T 3

T∑
s=1

T∑
t=1

T∑
q=1

E∗(ψ∗′1,jk,stψ
∗
1,jk,sq) ≤M

1

T 3

T∑
s=1

T∑
t=1

T∑
q=1

(
1

N

N∑
i=1

λ̃′iλ̃iε̃
2
itε̃

2
iq ε̃

2
is

)
= M

1

N

N∑
i=1

λ̃′iλ̃i

(
1

T

T∑
t=1

ε̃2
it

)3

≤M

(
1

N

N∑
i=1

|λ̃′iλ̃i|2
)1/2

 1

N

N∑
i=1

∣∣∣∣∣ 1

T

T∑
t=1

ε̃2
it

∣∣∣∣∣
6
1/2

≤M

(
1

N

N∑
i=1

‖λ̃i‖4
)1/2(

1

NT

N∑
i=1

T∑
t=1

|ε̃it|12

)1/2

= Op(1),

by applying Lemma C.1 with p = 12. For part (vii), we use similar arguments and show that

1
T

∑T
s=1E

∗
∥∥∥ 1√

T

∑T
t=1 ψ

∗
2,jk,st

∥∥∥2
= Op(1), where ψ∗2,jk,st is defined in part (v). In particular, ignor-

ing the group notation and considering j = k (Nj = Nk = N), we can write E∗(ψ∗′2,stψ
∗
2,sq) as follows.

E∗(ψ∗′2,stψ
∗
2,sq) =

1

N2

N∑
i1=1

N∑
i2 6=i1

N∑
i3=1

N∑
i4 6=i3

λ̃′i2 λ̃i4 E
∗[ε∗i2tε

∗
i4q(ε

∗
i1sε
∗
i1t − E

∗(ε∗i1sε
∗
i1t))(ε

∗
i3sε
∗
i3q − E

∗(ε∗i3sε
∗
i3q))]︸ ︷︷ ︸

≡X4

,

where X4 = 0 when i1 = i4 6= i2 = i3, and X4 6= 0 when i1 = i3 6= i2 = i4 with s 6= t = q or s = t = q.

It follows that

1

T

T∑
s=1

E∗

∥∥∥∥∥ 1√
T

T∑
t=1

ψ∗2,jk,st

∥∥∥∥∥
2

≤M 1

T 2

T∑
s=1

T∑
t=1

 1

N2

N∑
i1=1

N∑
i2 6=i1

λ̃′i2 λ̃i2 ε̃
2
i1sε̃

2
i1tε̃

2
i2t


= M

1

T

T∑
t=1

(
1

NT

N∑
i1=1

T∑
s=1

ε̃2
i1sε̃

2
i1t

) 1

N

N∑
i2 6=i1

λ̃′i2 λ̃i2 ε̃
2
i2t


≤M

 1

T

T∑
t=1

∣∣∣∣∣ 1

NT

N∑
i1=1

T∑
s=1

ε̃2
i1sε̃

2
i1t

∣∣∣∣∣
2
1/2 1

T

T∑
t=1

∣∣∣∣∣∣ 1

N

N∑
i2 6=i1

λ̃′i2 λ̃i2 ε̃
2
i2t

∣∣∣∣∣∣
21/2

≤M

(
1

NT

N∑
i1=1

T∑
s=1

|ε̃i1s|4
) 1

N

N∑
i2 6=i1

‖λ̃i2‖4
1/2 1

NT

N∑
i2 6=i1

T∑
t=1

|ε̃i2t|4
1/2

= Op(1),

given Lemma C.1 with p = 4.

Proof of Lemma C.3. Part (i): Since f̂ ct = Ŵ ′f̂1t and we can write the factors estimation error

as f̂jt−Hjfjt = V−1
j (Aj,1t +Aj,2t +Aj,3t +Aj,4t) as in A.2 in Appendix A, we can write f̂ ct as follows.

f̂ ct = Ŵ ′f̂1t = Ŵ ′(H1f1t + V−1
1 (A1,1t +A1,2t +A1,3t +A1,4t))

= W̃ ′1f1t + Ŵ ′V−1
1 (A1,1t +A1,2t +A1,3t +A1,4t)

= Û ′[E′cf1t︸ ︷︷ ︸
=fct

+Φ̂′sc(Ik1−kc − R̃ss)−1E′sf1t︸ ︷︷ ︸
=fs1t

] + Ŵ ′V−1
1 (A1,1t +A1,2t +A1,3t +A1,4t),

where we use W̃1 = H ′1Ŵ and W̃1 = [Ec +Es(Ik1−kc − R̃ss)−1Φ̂sc]Û from the proof of Lemma A.4 in
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Appendix A. Note that E′cf1t = f ct and E′sf1t = fs1t under H0. By letting Hc = Û ′, we can rewrite f̂ ct

as follows.

f̂ ct = Hcf ct + Ŵ ′V−1
1 (A1,1t +A1,2t +A1,3t +A1,4t) + Φ̂′sc(Ik1−kc − R̃ss)−1fs1t

= Hcf ct + Ŵ ′V−1
1

(
1

T

T∑
s=1

f̂1sγ1,st +
1

T

T∑
s=1

f̂1sζ1,st +
1

T

T∑
s=1

f̂1sη1,st +
1

T

T∑
s=1

f̂1sξ1,st

)
+ op(T

−1/2),

where we use Φ̂′sc(Ik1−kc − R̃ss)
−1 = Op(δ

−2
NT ). For the rest of the terms, we use Lemma A.2 in

Bai (2003): 1
T

∑T
s=1 f̂1sγ1,st = Op(δ

−1
NTT

−1/2); 1
T

∑T
s=1 f̂1sζ1,st = Op(δ

−1
NTN

−1/2); 1
T

∑T
s=1 f̂1sη1,st =

Op(N
−1/2); and 1

T

∑T
s=1 f̂1sξ1,st = Op(δ

−1
NTN

−1/2). Since Op(δ
−1
NTN

−1/2) = op(T
−1/2) and Op(δ

−1
NTT

−1/2) =

op(T
−1/2), we can simplify the asymptotic expansion of f̂ ct up to order op(T

−1/2) as follows.

f̂ ct = Hcf ct + Ŵ ′V−1
1

1

T

T∑
s=1

f̂1sη1,st + op(T
−1/2)

= Hcf ct + Ŵ ′V−1
1 V1H1︸ ︷︷ ︸
=W̃ ′1

(
Λ′1Λ1

N1

)−1
(

1√
N1

N1∑
i=1

λ1,iε1,it

)
︸ ︷︷ ︸

=u1t

1√
N1

+ op(T
−1/2)

= Hcf ct +
1√
N1

Û ′[E′cu1t︸ ︷︷ ︸
=u

(c)
1t

+ Φ̂sc(Ik1−kc − R̃ss)−1︸ ︷︷ ︸
=Op(δ−2

NT )

E′su1t︸ ︷︷ ︸
=u

(s)
1t

] + op(T
−1/2)

= Hcf ct +
1√
N1

Hcu
(c)
1t + op(T

−1/2),

where we use the fact that
F̂ ′1F1

T = V1H1

(
Λ′1Λ1

N1

)−1
by the definition of H1 in the second equality and

use the expression for W̃1 in the third equality.

Part (ii): Next, we show the asymptotic expansion of λ̂cj,i up to order op(T
−1/2). In particular, by

using the fact that Λ̂cj = 1
T Y
′
j F̂

c and Yj = F cΛc′j + F sj Λs′j + εj and substituting appropriately, we can

write λ̂cj,i as follows.

λ̂cj,i = (Hc)−1′λcj,i +Hc 1

T

T∑
t=1

f ct εj,it +Hc 1

T

T∑
t=1

f ct f
s′
jtλ

s
j,i

+
1

T

T∑
t=1

(f̂ ct −Hcf ct )εj,it︸ ︷︷ ︸
=(a)

+
1

T

T∑
t=1

(f̂ ct −Hcf ct )fs′jt︸ ︷︷ ︸
=(b)

λsj,i −
1

T

T∑
t=1

(f̂ ct −Hcf ct )(f̂ ct −Hcf ct )′︸ ︷︷ ︸
=(c)

(Hc)−1′λcj,i

− 1

T

T∑
t=1

Hcf ct (f̂ ct −Hcf ct )′︸ ︷︷ ︸
=(d)

(Hc)−1′λcj,i.

Then, to prove part (ii), we show that the terms (a) through (d) are op(T
−1/2). Using the expansion
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of f̂ ct from part (i), we can rewrite the term (a) as follows.

(a) = Hc 1

T
√
N1

T∑
t=1

u1tεj,it + op(T
−1/2)

= Hc

(
Λ′1Λ1

N1

)−1 1

TN1

T∑
t=1

N1∑
k=1

λ1,kε1,ktεj,it + op(T
−1/2)

= Hc

(
Λ′1Λ1

N1

)−1


1

TN1

T∑
t=1

N1∑
k=1

(ε1,ktεj,it − E(ε1,ktεj,it))︸ ︷︷ ︸
=Op((TN1)−1/2)

+
1

TN1

T∑
t=1

N1∑
k=1

E(ε1,ktεj,it)︸ ︷︷ ︸
=O(N−1

1 )
by Ass 5-(a)


+ op(T

−1/2)

= op(T
−1/2).

Similarly, we can show that (b) and (d) are op(T
−1/2) by replacing f̂ ct −Hcf ct with its expansion up

to order op(T
−1/2). For example, ignoring ‖Hc‖ = Op(1), the term (d) is 1

T

∑T
t=1(f̂ ct − Hcf ct )f c′t =(

Λ′1Λ1

N1

)−1
1√
N1T

(
1√
N1T

∑T
t=1 f

c
t ε
′
1tΛ1

)
= Op((TN1)−1/2) = op(T

−1/2) by Assumption 4-(c). Using the

proof of Lemma A.1-(e), we can show that 1
NT

∑T
t=1 u1tu

′
1t = Op(N

−1) and show that (e) = op(T
−1/2).

Our asymptotic expansions for f̂ ct and λ̂cj,i are equivalent to those in AGGR(2019) (specifically, (C.92)

and (C.94) in their Online Appendix).

Part (iii): To obtain the asymptotic expansion of f̂sjt, we follow the arguments in AGGR(2019)

closely. Recall that f̂sjt are principal components of the residuals such that ξj,it = yj,it − f̂ c′t λ̂
c
j,i.

Following the arguments in AGGR (2019), by replacing f̂ ct and λ̂cj,i with their asymptotic expansions

of order up to op(T
−1/2) and using the fact that Hc′Hc = Σ̃−1

cc + op(T
−1/2), we can rewrite ξj,it as

follows.12

ξj,it =
(
f sjt − Σ̃j,cΣ̃

−1
cc f

c
t

)′
︸ ︷︷ ︸

=f̃s′jt

λsj,i +

(
εj,it −

1√
Nj

u
(c)′
jt λ

c
j,i − f c′t

(
Σ̃−1
cc

1

T

T∑
t=1

f ct εj,it

))
︸ ︷︷ ︸

≡ẽj,it

+op(T
−1/2).

Using the identity from Bai (2003) as in Appendix A.2, we can write f̂ sjt − H̃s
j f̃

s
jt as follows.

f̂ sjt − H̃s
j f̃

s
jt = (Vsj )−1(Bj,1t +Bj,2t +Bj,3t),

where

Bj,1t =
1

T

T∑
l=1

f̂sjl

 1

Nj

Nj∑
i=1

ẽj,ilẽj,it

 ; Bj,2t =
1

T

T∑
l=1

f̂sjlf̃
s′
jl

Λs′j ẽjt

Nj
; Bj,3t =

1

T

T∑
l=1

f̂sjlf̃
s′
jt

Λs′j ẽjl

Nj
.

12We can replace f̂c
t and λ̂c

j,i with their expansions based on alternative group common factors such that ḟc
t = Ẇ ′f̂2t,

where Ẇ is k1×kc matrix collecting eigenvectors of R̂∗ associated to kc eigenvalues. It yields the similar expansion such

that ḟc
t = Ḣc

(
fc
t + 1

N2
u
(c)
2t

)
+ op(T−1/2).
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We show that Bj,1t and Bj,3t are op(T
−1/2) and Bj,2t have a bias term of order Op(N

−1/2
j ) up to order

op(T
−1/2) (ignoring ‖(Vsj )−1‖ = Op(1)). Letting wcj,i ≡ Σ̃−1

cc
1√
T

∑T
t=1 f

c
t εj,it, we first rewrite Bj,1t as

follows.

Bj,1t =
1

T

T∑
l=1

f̂sjl
1

Nj

Nj∑
i=1

(
εj,il −

1√
Nj

u
(c)′
jl λ

c
j,i −

1√
T
f c′l w

c
j,i

)(
εj,it −

1√
Nj

u
(c)′
jt λ

c
j,i −

1√
T
f c′t w

c
j,i

)

=
1

T

T∑
l=1

f̂sjl
1

Nj

Nj∑
i=1

εj,ilεj,it −
1

T

T∑
l=1

f̂ sjl
1

Nj

√
Nj

Nj∑
i=1

εj,ilu
(c)′
jt λ

c
j,i −

1

T

T∑
l=1

f̂sjl
1

Nj

√
Nj

Nj∑
i=1

εj,itu
(c)′
jl λ

c
j,i

− 1

T

T∑
l=1

f̂sjl
1

Nj

√
T

Nj∑
i=1

εj,ilf
c′
t w

c
j,i −

1

T

T∑
l=1

f̂sjl
1

Nj

√
T

Nj∑
i=1

εj,itf
c′
l w

c
j,i +

1

T

T∑
l=1

f̂sjl
1

N2
j

Nj∑
i=1

u
(c)′
jl λ

c
j,iu

(c)′
jt λ

c
j,i

+
1

T

T∑
l=1

f̂sjl
1

Nj

√
NjT

Nj∑
i=1

λc′j,iu
(c)
jl f

c′
t w

c
j,i +

1

T

T∑
l=1

f̂sjl
1

Nj

√
NjT

Nj∑
i=1

λc′j,iu
(c)
jt f

c′
l w

c
j,i

+
1

T

T∑
l=1

f̂sjl
1

NjT

Nj∑
i=1

f c′l w
c
j,if

c′
t w

c
j,i

= Bj,1t,(1) +Bj,1t,(2) +Bj,1t,(3) +Bj,1t,(4) +Bj,1t,(5) +Bj,1t,(6) +Bj,1t,(7) +Bj,1t,(8) +Bj,1t,(9).

We can show that all nine terms in Bj,1t are op(T
−1/2). We can show that Bj,1t,(1) = op(T

−1/2) by

applying similar arguments in Lemma A.2 in Bai (2003). We can write the next term as follows.

Bj,1t,(2) =
1

T

T∑
l=1

f̂sjl
1

Nj

 1√
Nj

Nj∑
i=1

λcj,iεj,il

u
(c)
jt

=
1

Nj

[
H̃s
j

1

T

T∑
l=1

f̃sjl

(
Λc′j εjl√
Nj

)′
+

1

T

T∑
l=1

(f̂sjl − H̃s
j f̃

s
jl)

(
Λc′j εjl√
Nj

)′]
u

(c)
jt

≤ max
1≤t≤T

‖u(c)
jt ‖

1

Nj


∥∥∥∥∥H̃s

j

1

T

T∑
l=1

f̃sjl

(
Λc′j εjl√
Nj

)′∥∥∥∥∥︸ ︷︷ ︸
=(b1)

+

∥∥∥∥∥ 1

T

T∑
l=1

(f̂sjl − H̃s
j f̃

s
jl)

(
Λc′j εjl√
Nj

)′∥∥∥∥∥︸ ︷︷ ︸
=(b2)

 .

Then, (b1) = Op(T
−1/2) since it is equivalent to 1√

T

(
1√
TNj

∑T
l=1 f̃

s
jlε
′
jlΛ

c
j

)
, which is Op(T

−1/2) by

Assumption 4-(c). By applying Cauchy-Schwarz inequality,

(b2) ≤

(
1

T

T∑
l=1

‖f̂ sjl − H̃s
j f̃

s
jl‖2
)1/2

 1

T

T∑
l=1

∥∥∥∥∥Λc′j εjl√
Nj

∥∥∥∥∥
2
1/2

= Op(δ
−1
NT ).

Since we can show that max1≤t≤T ‖u(c)
jt ‖ = Op(

√
T ) by Assumption WB3-(c), we have Bj,1t,(2) =

op(T
−1/2). We can use similar arguments to show that Bj,1t,(3) = op(T

−1/2). Specifically, we can write

Bj,1t,(3) =
(

1
T

∑T
l=1 f̂

s
jlu

(c)′
jl

)(
1√
Nj

∑Nj

i=1 λ
(c)
j,i εj,it

)
1
Nj

. Then, by using the fact that 1
T

∑T
l=1 f̂

s
jlu

(c)
jl =
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Op(δ
−1
NT ) and maxt

∥∥∥∥Λc′
j εjt√
Nj

∥∥∥∥ = Op(T
1/2), we can show that Bj,1t,(3) = op(T

−1/2). We write the next

term as

Bj,1t,(4) =
1

T

T∑
l=1

f̂sjl

 1

NjT

Nj∑
i=1

T∑
s=1

f csεj,isεj,il

′ Σ̃−1
cc f

c
t

≤ max
1≤t≤T

‖f ct ‖

∥∥∥∥∥∥ 1

T

T∑
l=1

f̂sjl

 1

NjT

Nj∑
i=1

T∑
s=1

f csεj,isεj,il

′∥∥∥∥∥∥ ‖Σ̃−1
cc ‖

≤ max
1≤t≤T

‖f ct ‖

∥∥∥∥∥∥ 1

T

T∑
l=1

f̂sjl
1√
NjT

 1√
NjT

Nj∑
i=1

T∑
s=1

f cs (εj,isεj,il − E(εj,isεj,il))

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

T

T∑
l=1

f̂sjl
1

NjT

Nj∑
i=1

T∑
s=1

f csE(εj,isεj,il)

∥∥∥∥∥∥
′ ∥∥∥Σ̃−1

cc

∥∥∥ .
By Assumption 4-(b), we have 1√

NjT

∑Nj

i=1

∑T
s=1 f

c
s (εj,isεj,il − E(εj,isεj,il)) = Op(1). Then, we can

show that the first term in the square bracket is Op(N
−1/2
j T−1/2). We can decompose the second term

in the square bracket into two parts as follows.∥∥∥∥∥∥ 1

T

T∑
l=1

f̂sjl
1

NjT

Nj∑
i=1

T∑
s=1

f csE(εj,isεj,il)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥ 1

T

T∑
l=1

(f̂sjl − H̃s
j f̃

s
jl)

1

NjT

Nj∑
i=1

T∑
s=1

f csE(εj,isεj,il)

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

T

T∑
l=1

H̃s
j f̃

s
jl

1

NjT

Nj∑
i=1

T∑
s=1

f csE(εj,isεj,il)

∥∥∥∥∥∥
= Op(δ

−1
NTT

−1) +Op(T
−1),

where we use the fact that 1
T

∑T
t=1

∥∥∥ 1
T

∑T
s=1 f

c
sγj,sl

∥∥∥ = Op(T
−2) by following the arguments in the

proof of Lemma A.1-(a). Then, by Assumption 2-(a), we can show that max1≤t≤T ‖f ct ‖ = Op(T
1/4)

and hence, Bj,1t,(4) = op(T
−1/2). Using similar arguments, we can also show that Bj,1t,(5) = op(T

−1/2).

Similar to the arguments to show that Bj,1t,(2) = op(T
−1/2), we can show that 1

T

∑T
l=1 f̂

s
jlu

(c)′
jl =

Op(δ
−1
NT ). Then, since Bj,1t,(6) is equivalent to write it as

(
1
T

∑T
l=1 f̂

s
jlu

(c)′
jl

)(
Λc′
j Λc

j

Nj

)
1
Nj
u

(c)
jt , we can

show this term is Op(δ
−1
NTN

−1
j T 1/2) = op(T

−1/2). Next, Bj,1t,(7) can be bounded as follows.

Bj,1t,(7) ≤

∥∥∥∥∥ 1

T

T∑
l=1

f̂sjlu
(c)′
jl

∥∥∥∥∥︸ ︷︷ ︸
=Op(δ−1

NT )

1√
NjT

∥∥∥∥∥∥ 1

Nj

Nj∑
i=1

λcj,iw
c′
j,i

∥∥∥∥∥∥︸ ︷︷ ︸
=Op(N

−1/2
j )

max
1≤t≤T

‖f ct ‖︸ ︷︷ ︸
=Op(T 1/4)

= Op(δ
−1
NTT

−1/2N−1
j ) = op(T

−1/2),

where we use the fact that 1
Nj

∑Nj

i=1 λ
c
j,iw

c′
j,i = 1√

Nj

(
1√
NjT

∑Nj

i=1

∑T
t=1 f

c
t ε
′
jtΛ

c
j

)
Σ̃−1
cc = Op(N

−1/2
j ) by

Assumption 4-(c). Following similar arguments, we have Bj,1t,(8) = Op(N
−1
j ) = op(T

−1/2). Next,
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Bj,1t,(9) can be bounded as follows.

Bj,1t,(9) ≤
1

T

∥∥∥∥∥ 1

T

T∑
l=1

f̂sjlf
c′
l

∥∥∥∥∥
∥∥∥∥∥∥ 1

Nj

Nj∑
i=1

wcj,iw
c′
j,i

∥∥∥∥∥∥ max
1≤t≤T

‖f ct ‖ = Op(T
−3/4) = op(T

−1/2),

where we use the fact that
∥∥∥ 1
Nj

∑Nj

i=1w
c
j,iw

c′
j,i

∥∥∥ ≤ ( 1
Nj

∑Nj

i=1

∥∥∥ 1
T

∑T
t=1 f

c
t εj,it

∥∥∥2
)
‖Σ̃−1

cc ‖2 = Op(1) by

Assumption 4-(a). Since we show that Bj,1t,(i) = op(T
−1/2) for i = 1, . . . , 9, we have Bj,1t = op(T

−1/2).

Next, our goal is to expand Bj,2t up to order op(T
−1/2). We first rewrite Bj,2t as follows.

Bj,2t =
1

T

T∑
l=1

f̂sjlf̃
s′
jl

Λs′j ẽjt

Nj

=
1

T

T∑
l=1

f̂sjlf̃
s′
jl

1

Nj

Nj∑
i=1

λj,iεj,it −
1

T

T∑
l=1

f̂sjlf̃
s′
jl

 1

Nj

√
Nj

Nj∑
i=1

λsj,iu
(c)′
jt λ

c
j,i

− 1

T

T∑
l=1

f̂ sjlf̃
s′
jl

1

Nj

Nj∑
i=1

λsj,if
c′
t w

c
j,i

= Bj,2t,(1) +Bj,2t,(2) +Bj,2t,(3).

We have Bj,2t,(i) = Op(N
−1/2
j ) for i = 1, 2 and Bj,2t,(3) = op(T

−1/2). To see this, we can bound Bj,2t,(3)

as follows.

Bj,2t,(3) ≤

(
1

T

T∑
l=1

f̂sjlf̃
s′
jl

) 1

Nj

Nj∑
i=1

λsj,iw
c′
j,i


︸ ︷︷ ︸

=Op(N
−1/2
j )

1√
T

max
1≤t≤T

‖f ct ‖︸ ︷︷ ︸
=Op(T 1/4)

= Op(N
−1/2
j T−1/2T 1/4) = op(T

−1/2).

Using the definition of ẽjl, we can decompose Bj,3t into three parts as follows.

Bj,3t =
1

T

T∑
l=1

f̂sjlf̃
s′
jt

 1

Nj

Nj∑
i=1

λsj,iεj,il

− 1

T

T∑
l=1

f̂sjlf̃
s′
jt

 1

Nj

√
Nj

Nj∑
i=1

λsj,iu
(c)′
jl λ

c
j,i


− 1

T

T∑
l=1

f̂sjlf̃
s′
jt

 1

Nj

√
T

Nj∑
i=1

λsj,if
c′
l w

c
j,i


= Bj,3t,(1) +Bj,3t,(2) +Bj,3t,(3)

Our next goal is to show that Bj,3t,(i) = op(T
−1/2) for i = 1, 2, 3. The first term Bj,3t,(1) can be bounded

by
∥∥∥ 1
TNj

∑T
l=1 f̂

s
jlε
′
jlΛ

s
j

∥∥∥maxt ‖f̃ sjt‖ and since we can show that
∥∥∥ 1
TNj

∑T
l=1 f̂

s
jlε
′
jlΛ

s
j

∥∥∥ = Op(δ
−2
NT ), we

have Bj,3t,(1) = op(T
−1/2). Bj,3t,(2) can be shown as op(T

−1/2) by applying that 1
T

∑T
l=1 f̂

s
jlu

(c)′
jl =

Op(δ
−1
NT ). The last term Bj,3t,(3) can be bounded as follows.

Bj,3t,(3) ≤

∥∥∥∥∥ 1

T

T∑
l=1

f̂sjlf
c′
l

∥∥∥∥∥
∥∥∥∥∥∥ 1

Nj

Nj∑
i=1

wcj,iλ
s′
j,i

∥∥∥∥∥∥ 1√
T

max
1≤t≤T

‖f̃sjt‖

= Op(N
−1/2
j T−1/2)Op(T

1/4) = op(T
−1/2),

by applying that 1
Nj

∑Nj

i=1w
c
j,iλ

s′
j,i = Op(N

−1/2
j ). Therefore, we can expand f̂sjt up to order op(T

−1/2)
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as follows.

f̂sjt = H̃s
j f̃

s
jt + (Vsj )−1

(
1

T

T∑
l=1

f̂ sjlf̃
s′
jl

) 1

Nj

Nj∑
i=1

λj,iεj,it −
1

Nj

√
Nj

Nj∑
i=1

λsj,iλ
c′
j,iu

(c)
jt

+ op(T
−1/2).

Noting that 1
T

∑T
l=1 f̂

s
jlf̃

s′
jl is equivalent to (Vsj )−1H̃s

j

(
Λs′
j Λs

j

Nj

)−1

by H̃s
j = (Vsj )−1

(
F̂ s′
j F̃

s
j

T

)(
Λs′
j Λs

j

Nj

)
, we

can also write f̂ sjt as follows.

f̂sjt = H̃s
j

f̃
s
jt +

1√
Nj

(
Λs′j Λsj
Nj

)−1
 1√

Nj

Nj∑
i=1

λj,iεj,it −
1

Nj

Nj∑
i=1

λsj,iλ
c′
j,iu

(c)
jt


︸ ︷︷ ︸

≡νsjt

+ op(T
−1/2).

Then, by following the arguments in AGGR(2019) (specifically, the arguments on page 56 in their

Online Appendix), we can show that νsjt = u
(s)
jt and this completes the proof of part (iii).

Part (iv): Recall that λ̂sj,i = 1
T

∑T
t=1 f̂

s
jtξj,it. By expanding ξj,it up to order op(T

−1/2) as in the

proof of part (iii), we can rewrite λ̂sj,i as follows.

λ̂sj,i =
1

T

T∑
t=1

f̂sjt(f̃
s′
jtλ

s
j,i + ẽj,it) + op(T

−1/2)

=
1

T

T∑
t=1

f̂sjtf̃
s′
jtλ

s
j,i +

1

T

T∑
t=1

f̂sjtẽj,it + op(T
−1/2)

=
1

T

T∑
t=1

f̂sjt[f̂
s
jt − (f̂sjt − H̃s

j f̃
s
jt)]
′(H̃s′

j )−1λsj,i +
1

T

T∑
t=1

(f̂sjt − H̃s
j f̃

s
jt)ẽj,it +

1

T

T∑
t=1

H̃s
j f̃

s
jtẽj,it + op(T

−1/2)

= (H̃s′
j )−1λsj,i −

1

T

T∑
t=1

f̂sjt(f̂
s
jt − H̃s

j f̃
s
jt)
′

︸ ︷︷ ︸
=(a)

(Hs′
j )−1λsj,i +

1

T

T∑
t=1

(f̂sjt − H̃s
j f̃

s
jt)ẽj,it︸ ︷︷ ︸

=(b)

+
1

T

T∑
t=1

H̃s
j f̃

s
jtẽj,it︸ ︷︷ ︸

=(c)

+op(T
−1/2).

To expand further, we analyze three terms, (a), (b), and (c). By replacing f̂sjt with (f̂ sjt−H̃s
j f̃

s
jt)+H̃s

j f̃
s
jt,

we can decompose (a) further into two parts: 1
T

∑T
t=1(f̂ sjt−H̃s

j f̃
s
jt)(f̂

s
jt−H̃s

j f̃
s
jt)
′ and H̃s

j
1
T

∑T
t=1 f̃

s
jt(f̂

s
jt−

H̃s
j f̃

s
jt)
′. By using that 1

T

∑T
t=1 ujtu

′
jt = Op(1), we can show that 1

T

∑T
t=1(f̂ sjt− H̃s

j f̃
s
jt)(f̂

s
jt− H̃s

j f̃
s
jt)
′ =

1
Nj

(
1
T

∑T
t=1 u

(s)
jt u

(s)′
jt

)
+op(T

−1/2) = op(T
−1/2). By Assumption 4-(c), we can also show that H̃s

j
1
T

∑T
t=1 f̃

s
jt(f̂

s
jt−

H̃s
j f̃

s
jt)
′ = Op((TNj)

−1/2) = op(T
−1/2). Next, we rewrite (b) as follows.

1

T

T∑
t=1

(f̂sjt − H̃s
j f̃

s
jt)ẽj,it =

1

T
√
Nj

T∑
t=1

u
(s)
jt εj,it︸ ︷︷ ︸

=(b1)

− 1

TNj

T∑
t=1

u
(s)
jt u

(c)′
jt λ

c
j,i︸ ︷︷ ︸

=(b2)

− 1

T
√
TNj

T∑
t=1

u
(s)
jt f

c′
t w

c
j,i︸ ︷︷ ︸

=(b3)

+op(T
−1/2).

Since we can write (b1) =
(

Λs′
j Λs

j

Nj

)−1
(

1
TNj

∑T
t=1

∑Nj

i=1 λj,iε
2
j,it −

(
Λs′
j Λc

j

Nj

)
1

T
√
Nj

∑T
t=1 εj,itu

(c)
jt

)
, using

the similar arguments in the proof of part (ii), we can show that (b1) = Op(δ
−2
NT ) = op(T

−1/2). Also,
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using the fact that 1
T

∑T
t=1 ujtu

′
jt = Op(1), (b2) = Op(N

−1
j ) = op(T

−1/2). We can bound the term (b3)

as follows.

(b3) ≤ 1√
TNj

∥∥∥∥∥ 1

T

T∑
t=1

u
(s)
jt f

c′
t

∥∥∥∥∥ max
1≤i≤N

wcj,i =
1√
TNj

Op

(
1√
T

)
Op(

√
logNj) = op(T

−1/2),

where we use max1≤i≤N w
c
j,i = Op(

√
logNj) by Assumption WB3-(b) and 1

T

∑T
t=1 u

(s)
jt f

c′
t = Op(T

−1/2)

by Assumption 4-(c). Next, we expand the term (c) by using the definition of ẽj,it, ignoring H̃s
j = Op(1).

1

T

T∑
t=1

f̃sjtẽj,it =
1

T

T∑
t=1

f̃sjtεj,it −
1

T
√
Nj

T∑
t=1

f̃sjtu
(c)′
jt λ

c
j,i︸ ︷︷ ︸

=(c1)

− 1

T
√
T

T∑
t=1

f̃sjtf
c′
t w

c
j,i︸ ︷︷ ︸

=(c2)

=
1

T

T∑
t=1

f̃ sjtεj,it + op(T
−1/2).

We can show the terms (c1) and (c2) are op(T
−1/2). Using the similar arguments above, we can

show that (c1) = Op((TNj)
−1/2) = op(T

−1/2) by Assumption 4-(c). By using the definition such

that f̃sjt = fsjt − Σ̃j,cΣ̃
−1
cc f

c
t , we can show that (c2) = 0. Finally, by plugging all the terms back

into expansion of λ̂sj,i and keeping only the terms non-negligible up to order op(T
−1/2), we have the

following expansion for λ̂sj,i:

λ̂sj,i = (H̃s′
j )−1λsj,i + H̃s

j

1

T

T∑
t=1

f̃sjtεj,it + op(T
−1/2).

Since we can show that H̃s′
j H̃

s
j =

(
1
T

∑T
t=1 f̃

s
jtf̃

s′
jt

)−1
+ op(T

−1/2), we can show this expansion is

equivalent to the expansion of λ̂sj,i in AGGR(2019) (i.e., equation (C.95) in their Online Appendix).

Proof of Theorem 4.1. We first verify Theorem 3.1 and then Proposition 3.1. Given

Lemma C.2, it suffices to show that the wild bootstrap in Algorithm 1 satisfies Condition D* and

Condition E*.

Condition D*: Recall that B∗ = tr(Σ̃∗U ). By the fact that ηj,it are i.i.d.N(0, 1) across (j, i, t),

Σ̃∗U =
1

T

T∑
t=1

E∗(U∗t U∗′t ) = µ2
N

1

T

T∑
t=1

E∗(u
(c)∗
1t u

(c)∗′
1t )︸ ︷︷ ︸

≡Σ̃∗U,11

+
1

T

T∑
t=1

E∗(u
(c)∗
2t u

(c)∗′
2t )︸ ︷︷ ︸

≡Σ̃∗U,22

= µ2
N Σ̃∗U ,11 + Σ̃∗U ,22.

Since u∗jt ≡
(

Λ̃′jΛ̃j

Nj

)−1
Λ̃′jε
∗
jt√
Nj

, we can write Σ̃∗U ,jj for j = 1, 2 as follows.

Σ̃∗U ,jj =


(

Λ̃′jΛ̃j

Nj

)−1
 1

Nj

Nj∑
i=1

Nj∑
k=1

λ̃j,iλ̃
′
j,k

1

T

T∑
t=1

E∗(εj,itεj,kt)

( Λ̃′jΛ̃j

Nj

)−1


(cc)

=


(

Λ̃′jΛ̃j

Nj

)−1
 1

Nj

Nj∑
i=1

λ̃j,iλ̃
′
j,i

1

T

T∑
t=1

ε̃2
j,it

( Λ̃′jΛ̃j

Nj

)−1


(cc)

=


(

Λ̃′jΛ̃j

Nj

)−1

Γ̃j

(
Λ̃′jΛ̃j

Nj

)−1


(cc)

,
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where we define Γ̃j ≡ 1
Nj

∑Nj

i=1 λ̃j,iλ̃
′
j,i

1
T

∑T
t=1 ε̃

2
j,it. Next, recall that B = tr(Σ̃−1

cc Σ̃U ). For example, by

Assumption WB2, we have Σ̃U = µ2
N Σ̃U ,11 + Σ̃U ,22, where

Σ̃U ,jj =


(

Λ′jΛj

Nj

)−1
 1

Nj

Nj∑
i=1

λj,iλ
′
j,iγj,ii

(Λ′jΛj

Nj

)−1


(cc)

,

and γj,ii ≡ 1
T

∑T
t=1E(ε2

j,it). Our goal is to show that Σ̃∗U ,jj = Σ̃U ,jj + op(T
−1/2). In fact, since

the asymptotic expansions of λcj,i and λsj,i are equivalent to those in AGGR (2019), by applying their

Lemma B.8, we can show that Σ̃∗U ,jj = Σ̃U ,jj+op(T
−1/2). In particular, by using asymptotic expansions

in Lemma C.3 and by stacking over i for λ̂cj,i and λ̂sj,i, we have the following expansions:

Λ̂cj =

(
Λcj +

1√
T
W c
j + ΛsjΣ̃j,cΣ̃

−1
cc

)
(Hc)−1 + op(T

−1/2)

Λ̂sj =

(
Λsj +

1√
T
W s
j

)
(H̃s

j )−1 + op(T
−1/2),

where W c
j =

(
1√
T

∑T
t=1 εjtf

c′
t

)
Σ̃−1
cc and W s

j =
(

1√
T

∑T
t=1 εjtf̃

s′
jt

)(
1
T

∑T
t=1 f̃

s
jtf̃

s′
jt

)−1
. Then, we have

the following expansion, which is equivalent to the equation (C.98) in AGGR (2019):

Λ̃j =

(
Λj +

1√
T
Gj +

1√
T

ΛjQj

)
H−1
j + op(T

−1/2),

where

Gj =
[
W c
j

... W s
j

]
, Qj =

[
0 0√

T Σ̃j,cΣ̃
−1
cc 0

]
and Hj =

[
Hc 0

0 H̃s
j

]
.

Similar to the arguments in AGGR (2019) and by our Assumption 4-(a) and (c), we can show that

Λ̃′jΛ̃j

Nj
= (H′j)−1

(
Λ′jΛj

Nj
+

1√
T

(LΛ,j + L′Λ,j)

)
(Hj)−1 + op(T

−1/2),

where LΛ,j =
(

Λ′jΛj

Nj

)
Qj . The rest of the proof similarly follows the arguments in Lemma B.8 in

AGGR (2019).

Condition E*: For simplicity, we assume that kc = 1 and ksj = 0 for j = 1, 2 and N1 = N2 = N .

We first derive Ω∗U . Using Algorithm 1, we have

Ω∗U =
1

4

( 1

T

T∑
t=1

V ar∗(Z∗N,t) +
2

T

T∑
t=1

T∑
s>t

Cov∗(Z∗N,t,Z∗N,s)
)

=
1

4

1

T

T∑
t=1

V ar∗(Z∗N,t),

where we use Cov∗(Z∗N,t,Z∗N,s) = 0 for t 6= s since u∗jt and u∗ks are independent for either t 6= s or

j 6= k under Assumption WB2. We can write V ar∗(Z∗N,t) as

V ar∗(Z∗N,t) = E∗[z∗21t + z∗22t + 2z∗1tz
∗
2t + 4u∗21tu

∗2
2t − 4(z∗1t + z∗2t)u

∗
1tu
∗
2t],

where z∗jt = u∗2jt − E∗(u∗2jt ). By Assumption WB2, E∗(z∗1tz
∗
2t) = 0 and E∗(z∗jtu

∗
1tu
∗
2t) = 0. In ad-

dition, we can show that E∗(z∗2jt ) = 2

(
Λ̃′jΛ̃j

N

)−4
1
N2

∑N
i=1

∑Nj

k=1 λ̃
2
j,iλ̃

2
j,kε̃

2
j,itε̃

2
j,kt, and E∗(u∗21tu

∗2
2t ) =
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(
Λ̃′1Λ̃1

N

)−2 (
Λ̃′2Λ̃2

N

)−2
1
N2

∑N1
i=1

∑N2
j=1 λ̃

2
1,iλ̃

2
2,j ε̃

2
1,itε̃

2
2,jt. Using these expressions, we can rewrite Ω∗U as

follows.

Ω∗U =
1

2

( Λ̃′1Λ̃1

N1

)−4
1

N2
1

N1∑
i=1

N1∑
j=1

λ̃2
1,iλ̃

2
1,j

(
1

T

T∑
t=1

ε̃2
1,itε̃

2
1,jt

)

+

(
Λ̃′2Λ̃2

N2

)−4
1

N2
2

N2∑
i=1

N2∑
j=1

λ̃2
2,iλ̃

2
2,j

(
1

T

T∑
t=1

ε̃2
2,itε̃

2
2,jt

)

+2

(
Λ̃′1Λ̃1

N1

)−2(
Λ̃′2Λ̃2

N2

)−2
1

N1N2

N1∑
i=1

N2∑
j=1

λ̃2
1,iλ̃

2
2,j

(
1

T

T∑
t=1

ε̃2
1,itε̃

2
2,jt

)
≡ (I) + (II) + (III).

To show that Ω∗U
p−→ ΩU , first note that under Assumption WB2, ΩU = 1

2(ΣU ,11 + ΣU ,22)2, where

ΣU ,jj = limN→∞ Σ̃U ,jj . The proof follows by showing that (I) and (II) converge in probability to Σ2
U ,11

and Σ2
U ,22, respectively, and (III) converges in probability to 2ΣU ,11ΣU ,22. For each j = 1, 2, we can

show that 1
N2

∑N
i=1

∑N
k=1 λ̃

2
j,iλ̃

2
j,k

1
T

∑T
t=1 ε̃

2
j,itε̃

2
j,kt = Ω2

jj(0) + op(1), where Ωjj ≡ 1
N

∑Nj

i=1 λj,iγj,ii. By

appropriately adding and subtracting, a detailed proof involves three steps (ignoring the group nota-

tion): (i) 1
N2

∑N
i,j=1 λ̃

2
i λ̃

2
j

(
1
T

∑T
t=1 ε̃

2
itε̃

2
jt − ε2

itε
2
jt

)
= op(1), (ii) 1

N2

∑N
i,j=1(λ̃2

i λ̃
2
j − λ2

iλ
2
j )

1
T

∑T
t=1 ε

2
itε

2
jt =

op(1), and (iii) 1
N2

∑N
i,j=1 λ

2
iλ

2
j

(
1
T

∑T
t=1 ε

2
itε

2
jt − γiiγjj

)
= op(1). By Assumption WB3-(a), we can

show that 1√
T

(
1√
T

∑T
t=1 ε

2
itε

2
jt − E(ε2

itε
2
jt)
)

= Op(T
−1/2), which gives us (iii) = op(1). Next, to show

that (ii) = op(1), we first rewrite the term as follows:

1

N2

N∑
i,j=1

(λ̃2
i − λ2

i )λ
2
j

(
1

T

T∑
t=1

ε2
itε

2
jt

)
+

1

N2

N∑
i,j=1

(λ̃2
j − λ2

j )λ̃
2
i

(
1

T

T∑
t=1

ε2
itε

2
jt

)
≡ (ii− a) + (ii− b),

by using that λ̃2
i λ̃

2
j − λ2

iλ
2
j = (λ̃2

i − λ2
i )λ

2
j + (λ̃2

j − λ2
j )λ̃

2
i . Using Cauchy-Schwarz inequality, we have

(ii− a) =
1

T

T∑
t=1

(
1

N

N∑
i=1

(λ̃2
i − λ2

i )ε
2
it

) 1

N

N∑
j=1

λ2
jε

2
jt


≤

 1

T

T∑
t=1

∣∣∣∣∣ 1

N

N∑
i=1

(λ̃2
i − λ2

i )ε
2
it

∣∣∣∣∣
2
1/2 1

T

T∑
t=1

∣∣∣∣∣∣ 1

N

N∑
j=1

λ2
jε

2
jt

∣∣∣∣∣∣
21/2

≡ (ii− aa)1/2(ii− ab)1/2.

For the first term,

(ii− aa) ≤

(
1

NT

N∑
i=1

T∑
t=1

|εit|4
)

︸ ︷︷ ︸
=Op(1)

(
1

N

N∑
i=1

|λ̃2
i − λ2

i |2
)

= Op

(
1

N
+

logN

T

)
,

where we use the following fact

1

N

N∑
i=1

(λ̃i − λi)2(λ̃i + λi)
2 ≤ max

i≤N
|λ̃i − λi|2

1

N

N∑
i=1

(λ̃i + λi)
2 = Op

(
1

N
+

logN

T

)
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by Assumption WB3-(b) and by following Gonçalves and Perron (2020) (see proof of their Lemma

B.2.). Finally, for part (i), using that ε̃2
itε̃

2
jt − ε2

itε
2
jt = ε̃2

it(ε̃
2
jt − ε2

jt) + (ε̃2
it − ε2

it)ε
2
jt and decompose (i)

into two parts: (i-a) and (i-b). We can rewrite (i-a) as follows:

(i− a) =
1

T

T∑
t=1

(
1

N

N∑
i=1

λ̃2
i ε̃

2
it

) 1

N

N∑
j=1

λ̃2
j (ε̃

2
jt − ε2

jt)


≤

 1

T

T∑
t=1

∣∣∣∣∣ 1

N

N∑
i=1

λ̃2
i ε̃

2
it

∣∣∣∣∣
2
1/2 1

T

T∑
t=1

∣∣∣∣∣∣ 1

N

N∑
j=1

λ̃2
j (ε̃

2
jt − ε2

jt)

∣∣∣∣∣∣
21/2

≡ (i− aa)1/2(i− ab)1/2.

We can show that (i−aa) = Op(1). Since we can write (i−ab) ≤
(

1
N

∑N
i=1 |λ̃i|4

)(
1
NT

∑T
t=1

∑N
i=1 |ε̃2

it − ε2
it|2
)

,

our goal is to show that 1
NT

∑T
t=1

∑N
i=1 |ε̃2

it − ε2
it|2 = op(1). Since ε̃2

it − ε2
it = (ε̃it − εit)(ε̃it + εit), we

have

1

NT

T∑
t=1

N∑
i=1

|ε̃2
it − ε2

it|2 ≤
1

T

T∑
t=1

max
i≤N

(ε̃it − εit)2 1

N

N∑
i=1

(ε̃it + εit)
2

(
1

T

T∑
t=1

∣∣∣∣max
i≤N

(ε̃it − εit)2

∣∣∣∣2
)1/2

 1

T

T∑
t=1

∣∣∣∣∣ 1

N

N∑
i=1

(ε̃it + εit)
2

∣∣∣∣∣
2
1/2

︸ ︷︷ ︸
=Op(1)

.

By applying similar arguments in Gonçalves and Perron (2020) (proof of their Lemma B.2), we can

show that 1
T

∑T
t=1

∣∣maxi≤N (ε̃it − εit)2
∣∣2 = Op

((
1
N + logN

T

)2
)

by Lemma C.1 and Assumption WB3-

(b). The proof for (i-b) is similar.

Next, we show that 1√
T

Ω
∗−1/2
U

∑T
t=1 Z

∗
N,t

d∗→p N(0, 1). We let ω∗N,t ≡ (ΩU )∗−1/2Z∗N,t (given that

Z∗N,t depends on η1t and η2t, Z
∗
N,t is an independent array) and apply a CLT for heterogeneous

independent random vectors on 1√
T

∑T
t=1 ω

∗
N,t. We have E∗(ω∗N,t) = 0 and V ar∗( 1√

T

∑T
t=1 ω

∗
N,t) = 1.

Therefore, it suffices to show that E∗|ω∗N,t|2d = Op(1) for some d > 1 (Lyapunov’s condition) and it

is sufficient to show that E∗|Z∗N,t|2d = Op(1) (E∗|ω∗N,t|2d ≤ |Ω
∗−1/2
U |2dE∗|Z∗N,t|2d). Note that Z∗N,t =

z∗1,Nt + z∗2,Nt − 2u∗1tu
∗
2t, where z∗jt = u∗2jt − E∗(u∗2jt ). By applying the cr-inequality, we have

E∗|Z∗N,t|2d ≤ 32d−1
(
E∗|z∗1,Nt|2d + E∗|z∗2,Nt|2d + E∗|2u∗1tu∗2t|2d

)
.

We need to show that E∗|z∗jt|2d = Op(1) and E∗|u∗1tu∗2t|2d = Op(1). To show that E∗|u∗1tu∗2t|2d = Op(1),
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with d = 2, it suffices to show that E∗|u∗jt|4 = Op(1) (∵ E∗|u∗1tu∗2t|2d ≤ E∗|u∗1t|2dE∗|u∗2t|2d) as follows.

E∗|u∗jt|4 ≤

(
Λ̃′jΛ̃j

Nj

)−4

E∗

∣∣∣∣∣ 1√
Nj

N∑
i=1

λ̃j,iε
∗
j,it

∣∣∣∣∣
4

=

(
Λ̃′jΛ̃j

Nj

)−4
1

N2
j

Nj∑
i1,i2,i3,i4

λ̃j,i1 λ̃j,i2 λ̃j,i3 λ̃j,i4E
∗(ε∗j,i1tε

∗
j,i2tε

∗
j,i3tε

∗
j,i4t)

≤ η̄

(
Λ̃′jΛ̃j

Nj

)−4
1

N2

N∑
i1,i2

λ̃2
j,i1 λ̃

2
j,i2 ε̃

2
j,i1tε̃

2
j,i2t = η̄

(
Λ̃′jΛ̃j

Nj

)−4(
1

Nj

N∑
i=1

λ̃2
j,iε̃

2
j,it

)2

,

where E∗(ε∗j,i1tε
∗
j,i2t

ε∗j,i3tε
∗
j,i4t

) ≤ η̄4 ≡ max{E∗(η4
j,it), 1} and E∗(η4

j,it) < C. Next, we show that

E∗|z∗jt|2d = Op(1). Since z∗jt = u∗2jt − E∗(u∗2jt ), we have

E∗|z∗jt|2d = E∗|u∗2jt − E∗(u∗2jt )|2d

≤ 22d−1(E∗|u∗2jt |2d + E∗|E∗(u∗2jt )|2d) ≤ CE∗|u∗jt|4d,

where C is some positive constant. Taking d = 2, it is sufficient to show that

E∗|u∗jt|8 =
1

N4
j

∑
i1,...,i8

λ̃j,i1 . . . λ̃j,i8 ε̃j,i1t . . . ε̃j,i8tE
∗(ηj,i1t . . . ηj,i8t) = Op(1).

Since ηj,it ∼ i.i.d.N(0, 1) we have four cases to consider. If i1 = . . . = i8, we have 1
N4

j

∑N
i=1 λ̃

8
j,iε̃

8
j,it =

E∗(η8
j,it)

1
N3

(
1
N

∑N
i=1 λ̃

8
j,iε̃

8
j,it

)
= Op(1) since E∗|ηj,it|8 < C. For the second case, we consider i1 =

i2, . . . , i7 = i8, we have E∗|u∗jt|8 = 1
N4

∑
i 6=m 6=k 6=l λ̃

2
j,iλ̃

2
j,mλ̃

2
j,kλ̃

2
j,lε̃

2
j,itε̃

2
j,mtε̃

2
j,ktε̃

2
j,lt. The third case is

i1 = i2 = i3 = i4 and i5 = . . . = i8. In this case, we can bound it as C1
1
N2

(
1
N

∑N
i=1 λ̃

4
j,iε̃

4
j,it

)2
since

E∗|ηj,it|4 < C1. Finally, we consider when i1 = . . . = i6 and i7 = i8, and in this case, we can bound

the term as C2
1
N2

(
1
N

∑N
i=1 λ̃

6
j,iε̃

6
j,it

)(
1
N

∑N
i=1 λ̃

2
j,iε̃

2
j,it

)
, where we use E∗|ηj,it|6 < C2.

Finally, we show that under the alternative hypothesis, the wild bootstrap method satisfies Con-

dition F* and therefore Proposition 3.1 follows. Under the alternative hypothesis, we have no group

common factor in our simple setting. The one factor that we extract from each group is group-specific

factor. Provided that the group common factor, f̂ ct is estimated from using the first group factor, f̂1t,

there is an additional bias term appear only in the second group. Particularly, we have

λ̃2,i = Φλ2,i + op(1), (15)

ε̃2,it = ε2,it + λ2,i(f2t − Φf1t) + op(1). (16)

Note that Φ = corr(f1t, f2t) and under the alternative hypothesis, the estimated factor loadings in the

second group are consistently estimate only a portion of the true factor loadings of the second group.

Moreover, the residual term in the second group will be containing the bias term. Using (15) and (16),
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we can rewrite the term related to the second group in bootstrap bias, B∗ as following:(
1

N2

N2∑
i=1

λ̃2
2,i

)−2
1

N2

N2∑
i=1

λ̃2
2,i

1

T

T∑
t=1

ε̃2
2,it =

1

Φ2

(
1

N2

N2∑
i=1

λ2
2,i

)−2
1

N2

N2∑
i=1

λ2
2,i

(
1

T

T∑
t=1

ε2
2,it

)

+
2

Φ2

(
1

N2

N2∑
i=1

λ2
2,i

)−2
1

N2

N2∑
i=1

λ3
2,i

(
1

T

T∑
t=1

ε2,it(f2t − Φf1t)

)

+
1

Φ2

(
1

N2

N2∑
i=1

λ2
2,i

)−2
1

N2

N2∑
i=1

λ4
2,i

(
1

T

T∑
t=1

(f2t − Φf1t)
2

)
+ op(1).

We can show that all the terms are Op(1) under Assumption 2 and 3.

We also need to show that 1√
T

∑T
t=1 Z

∗
N,t = Op(1) under the alternative hypothesis. To show

this, it is sufficient to show that V ar∗
(

1√
T

∑T
t=1 Z

∗
N,t

)
= Op(1). Under the Assumption WB2, we

have Cov(Z∗N,t, Z
∗
N,s) = 0 and V ar∗

(
1√
T

∑T
t=1 Z

∗
N,t

)
= 1

T

∑T
t=1 V ar(Z

∗
N,t). Since we showed that

V ar(Z∗N,t) = E∗(z∗21t )+E∗(z∗22t )+4E∗(u∗21tu
∗2
2t ) in the proof of Condition E*, where z∗jt = u∗2jt −E∗(u∗2jt ),

we focus on three terms: E∗(z∗21t ), E∗(z∗22t ) and E∗(u∗21tu
∗2
2t ). We can show that the first term is Op(1)

as follows.

E∗(z∗21t ) = 2

(
Λ̃′1Λ̃1

N1

)−2
1

N2

N1∑
i,j=1

λ̃2
1,iλ̃

2
1,j ε̃

2
1,itε̃

2
1,jt = 2

(
Λ′1Λ1

N1

)−2 1

N2
1

N∑
i,j=1

λ2
1,iλ

2
1,jε

2
1,itε

2
1,jt + op(1),

where we can obtain the second equality by using λ̃1,i = λ1,i + op(1) and ε̃1,it = ε1,it + op(1). This

is true when we use the factor from the first group as the group common factor. Then, we can show

that 1
T

∑T
t=1E

∗(z∗21t ) = Op(1) under our assumptions. For the second term, we have

E∗(z∗22t ) = 2

(
Λ̃′2Λ̃2

N2

)−2
1

N2
2

N2∑
i,j=1

λ̃2
2,iλ̃

2
2,j ε̃

2
2,itε̃

2
2,jt

=
2

Φ2

(
Λ′2Λ2

N2

)−2 1

N2
2

N2∑
i,j=1

λ2
2,iλ

2
2,j(ε2,it + λ2,i(f2t − Φf1t))

2(ε2,jt + λ2,j(f2t − Φf1t))
2

=
2

Φ2

(
Λ′2Λ2

N2

)−2 1

N2
2

N2∑
i,j=1

λ2
2,iλ

2
2,j [ε

2
2,itε

2
2,jt + λ2

2,jε
2
2,it(f2t − Φf1t)

2 + 2λ2,jε
2
2,itε2,jt(f2t − Φf1t)

+ λ2
2,iε

2
2,jt(f2t − Φf1t)

2 + λ2
2,iλ

2
2,j(f2t − Φf1t)

4 + 2λ2
2,iλ2,jε2,jt(f2t − Φf1t)

3 + 2λ2,iε2,itε
2
2,jt(f2t − Φf1t)

+ 2λ2,iλ
2
2,jε2,it(f2t − Φf1t)

3 + 4λ2,iλ2,jε2,itε2,jt(f2t − Φf1t)
2],

where we use (15) and (16) to obtain the second equality. Using the final equality, we can show that

1
T

∑T
t=1E

∗(z∗22t ) = Op(1). Similarly, we can show that E∗(u∗21tu
∗2
2t ) = Op(1).
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