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A Proofs of the main propositions

The proof of our results relies on the independence between the potential outcomes yt+h (e) and the

structural error ε1t. This independence condition follows straightforwardly from our assumptions

and is instrumental in providing a causal interpretation to the state-dependent LP estimands. We

summarize this result in the following lemma.

Lemma A.1 Consider the structural process defined by equations (3) and (4) in the main text. Under

Assumptions 1 and 2, ε1t is independent of {yt+h (e) , e ∈ A}, where A is the support of ε1t.

Proof of Lemma A.1. This proof is obvious given the definitions of yt+h (e) derived in the main

text.

Proof of Proposition 3.1. The proof is in the text.

Proof of Proposition 3.2. The proof is in the text.

Proof of Proposition 3.3. We start by deriving the potential outcomes yt+h (e) for this model.

For any e, define

β (e) = βR + (βE − βR) η (e) and γ (e) = γR + (γE − γR) η (e) ,

with η (e) = 1 (e > c) for any fixed e. Let V0t ≡ γt−1yt−1 + ε2t be a function of (ε2t, yt−1, ε1t−1) =(
ε2t, z

′
t−1

)
≡ U ′

t , since xt = ε1t and z′t = (xt, yt). With this notation, for h = 0, yt = βt−1ε1t + V0t.

The potential outcome for h = 0 is obtained from this equation by fixing ε1t = e:

yt (e) = βt−1e+ V0t ≡ m0 (e, Ut) ,

with Ut ≡
(
ε2t, z

′
t−1

)′
. For h = 1, yt+1 = βtε1t+1 + γtyt + ε2t+1, where yt = yt (ε1t), βt = β (ε1t) and

γt = γ (ε1t). Hence, upon fixing ε1t = e, we have that

yt+1 (e) = β (e) ε1t+1 + γ (e) yt (e) + ε2t+1,

which shows that yt+1 (e) can be obtained from yt (e). Replacing yt (e) = βt−1e+ V0t,

yt+1 (e) = γ (e)βt−1e+ Vt+1 (e) ≡ m1 (e, Ut+1) , (1)

where

Vt+1 (e) = γ (e)V0t + β (e) ε1t+1 + ε2t+1 ≡ V1 (e, Ut+1)

with

Ut+1 =
(
ε′t+1, ε2t, z

′
t−1

)′ ≡ (ε′t+1, U
′
t

)′
.
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For h = 2, writing βt+1 ≡ β (ε1t+1) and γt+1 ≡ γ (ε1t+1), it follows that

yt+2 (e) = βt+1ε1t+2 + γt+1yt+1 (e) + ε2t+2

= βt+1ε1t+2 + γt+1 [γ (e)βt−1e+ Vt+1 (e)] + ε2t+2

= γt+1γ (e)βt−1e+ Vt+2 (e) ≡ m2 (e, Ut+1) ,

where

Vt+2 (e) ≡ γt+1Vt+1 (e) + βt+1ε1t+2 + ε2t+2

= γt+1 [γ (e)V0t + β (e) ε1t+1 + ε2t+1] + βt+1ε1t+2 + ε2t+2

= γt+1γ (e)V0t + γt+1β (e) ε1t+1 + ε2t+1 + βt+1ε1t+2 + ε2t+2,

which is a function of Ut+2 ≡
(
ε′t+2, ε

′
t+1, ε2t, z

′
t−1

)′
=
(
ε′t+2, U

′
t+1

)′
. For any h > 1,

yt+h (e) = γt+h−1 · · · γt+1γ (e)βt−1e+ Vt+h (e) ≡ mh (e, Ut+h) ,

where

Vt+h (e) ≡ γt+h−1Vt+h−1 (e) + βt+h−1ε1t+h + ε2t+h,

and Ut+h ≡
(
ε′t+h, U

′
t+h−1

)′
.

Next, we show part (i) of the proposition, which derives the conditional average response function

for any fixed δ. For h = 0, yt (e+ δ)− yt (e) = βt−1δ, which does not depend on e. Hence,

CAR0 (δ, s) = E (yt (ε1t + δ)− yt (ε1t) |St−1 = s) = E (βt−1|St−1 = s) δ = βsδ.

For h = 1, by Definition 1,

CAR1 (δ, s) = E (yt+1 (ε1t + δ)− yt+1 (ε1t) |St−1 = s) ,

where yt+1 (ε1t) is equal to yt+1 (e) with e = ε1t (and similarly for yt+1 (ε1t + δ)). We will evaluate

CAR1 (δ, s) below, but note that under the simplifying Assumption 3, for any h > 1, we can write

CARh (δ, s) as a function of CAR1 (δ, s). Specifically, for h = 2, we have that

yt+2 (e+ δ)− yt+2 (e) = γt+1yt+1 (e+ δ) + βt+1ε1t+2 + ε2t+2 − (γt+1yt+1 (e) + βt+1ε1t+2 + ε2t+2)

= γt+1 [yt+1 (e+ δ)− yt+1 (e)] ,

and more generally for any h > 1,

yt+h (e+ δ)−yt+h (e) = γt+h−1 [yt+h−1 (e+ δ)− yt+h−1 (e)] = (γt+h−1 · · · γt+1) [yt+1 (e+ δ)− yt+1 (e)] .
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By Definition 1, for any h > 1,

CARh (δ, s) = E [yt+h (ε1t + δ)− yt+h (ε1t) |St−1 = s]

= E (γt+h−1 · · · γt+1)E [yt+1 (ε1t + δ)− yt+1 (ε1t) |St−1 = s]

= (γ̄)h−1CAR1 (δ, s) , (2)

where we let γ̄ ≡ E (γt+1) for any t. The last equality follows from the fact that γt is a function of

ε1t and ε1t is i.i.d. This implies that we only need to evaluate CAR1 (δ, s) and γ̄ to obtain the entire

conditional average response function. The Gaussianity assumption is instrumental in deriving the

closed-form expressions for γ̄ and CAR1 (δ, s). Under Assumption 3(a) and (b), using (1), for any

fixed e,

yt+1 (e+ δ)− yt+1 (e) = γ (e)βt−1δ

+[γ (e+ δ)− γ (e)]βt−1δ

+ [γ (e+ δ)− γ (e)]βt−1e

+ [γ (e+ δ)− γ (e)]V0t

+ [β (e+ δ)− β (e)] ε1t+1.

Next, evaluate this difference at e = ε1t and take the expectation, conditionally on St−1 = s. It follows

that for any fixed δ,

CAR1 (δ, s) ≡ E [yt+1 (ε1t + δ)− yt+1 (ε1t) |St−1 = s]

= E [γ (ε1t) |St−1 = s]βsδ + {E [(γ (ε1t + δ)− γ (ε1t)) |St−1 = s]βsδ

+E [(γ (ε1t + δ)− γ (ε1t)) ε1t|St−1 = s]βs + E [(γ (ε1t + δ)− γ (ε1t))V0t|St−1 = s]

+E[(β (ε1t + δ)− β (ε1t))ε1t+1|St−1 = s]} (3)

Note that the last term in (3) has conditional mean zero. This follows by the law of iterated ex-

pectations, using the fact that ε1t is an i.i.d. zero mean random variable which is independent of

ε2t. Under these assumptions, V0t is independent of ε1t, and the second-to-last term can be written

as E (γ (ε1t + δ)− γ (ε1t))]vs (where vs = E (V0t|St−1 = s) = γsE(yt−1|St−1 = s)). By using similar
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arguments, we can decompose CAR1 (δ, s) into the sum of

Direct effect = E(γ (ε1t))βsδ.

Indirect effect = E [(γ (ε1t + δ)− γ (ε1t))]βsδ

+E [(γ (ε1t + δ)− γ (ε1t)) ε1t]βs

+E [γ (ε1t + δ)− γ (ε1t)] vs.

This decomposition shows that the first component of CAR1 (δ, s) captures the direct effect of a shock

of size δ in ε1t on yt+h. Since γ (ε1t) = γt, this is the effect of a change in ε1t on yt+h that keeps γt

constant, as when St is exogenous. However, in the current model, St = η (ε1t), which means that

when we perturb ε1t by δ, this also impacts the model parameters at time t. The last three terms

in CAR1 (δ, s) capture this “indirect effect” since they depend on the wedge between γ (ε1t + δ) and

γ (ε1t).

Suppose now that ε1t ∼ N
(
0, σ2

1

)
, as in Assumption 3(b). Then,

E (η (ε1t + δ)) = E (1 (ε1t + δ > c)) = P (ε1t/σ1 > (c− δ) /σ1) = 1−Φ ((c− δ) /σ1) = Φ (−c/σ1 + δ/σ1) .

and

E (γ (ε1t + δ)) = γR + (γE − γR) Φ (−c/σ1 + δ/σ1) .

Also, we can show that

E [(γ (ε1t + δ)− γ (ε1t)) ε1t] = (γE − γR)E [(η (ε1t + δ)− η (ε1t)) ε1t]

= (γE − γR)E [(1 (ε1t + δ > c)− 1 (ε1t > c)) ε1t]

= (γE − γR)E

[
(1 ((c− δ) /σ1 < ε1t/σ1 < c/σ1))

ε1t
σ1

]
σ1

= (γE − γR)σ1 [ϕ ((c− δ) /σ1)− ϕ (c/σ1)]

= (γE − γR)σ1 [ϕ (−c/σ1 + δ/σ1)− ϕ (−c/σ1)] .
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It follows that

CAR1 (δ, s) = E [γ (ε1t + δ)]βsδ + E [(γ (ε1t + δ)− γ (ε1t)) ε1t]βs − E [γ (ε1t + δ)− γ (ε1t)] vs

= {γR + (γE − γR) Φ(−c/σ1 + δ/σ1)}βsδ + (γE − γR)σ1[ϕ (−c/σ1 + δ/σ1)− ϕ (−c/σ1))]βs

+{(γE − γR) [Φ (−c/σ1 + δ/σ)− Φ (−c/σ1)]vs}

= {γR + (γE − γR) Φ(−c/σ1)}βsδ︸ ︷︷ ︸
=E(γt)βsδ=Direct effect

+ {γR + (γE − γR) [Φ(−c/σ1 + δ/σ1)− Φ(−c/σ1)]}βsδ

+ {(γE − γR)σ1(ϕ(−c/σ1 + δ/σ1)− ϕ(−c/σ1))}βs (4)

+ {(γE − γR) [Φ (−c/σ1 + δ/σ1)− Φ (−c/σ1)]} vs,

where the last three terms define the indirect effect. Plugging this expression into (2) gives the formula

for CARh (δ, s) for any h > 1 and any fixed δ. Note that

γ̄ = E (γt) = γR + (γE − γR) Φ(−c/σ1) for all t.

To prove part (ii), we use the fact that

CMRh (s) = lim
δ→0

[δ−1CARh (δ, s)]

= (γ̄)h−1 lim
δ→0

[δ−1CAR1 (δ, s)]

= (γ̄)h−1CMR1 (s) ,

where CMR1 (s) = limδ→0CAR1 (δ, s) /δ. In particular, by dividing (4) by δ and taking the limit as

δ → 0, we get

CMR1 (s) = {γR + (γE − γR) Φ(−c/σ1)}βs + I0 + I1 + I2,

where

I0 = lim
δ→0

δ−1 {γR + (γE − γR) [Φ(−c/σ1 + δ/σ1)− Φ(−c/σ1)]}βsδ = 0

I1 = lim
δ→0

δ−1 {(γE − γR)σ1(ϕ(−c/σ1 + δ/σ1)− ϕ(−c/σ1))}βs

I2 = lim
δ→0

[δ−1 (γE − γR) [Φ (−c/σ1 + δ/σ1)− Φ (−c/σ1)]]vs.

We can evaluate I1 and I2 by using the following two Taylor expansions of the Gaussian pdf and cdf,

ϕ(−c/σ1 + δ/σ1) = ϕ(−c/σ1) + ϕ′(−c/σ1)
δ

σ1
+O

(
δ2
)
,

Φ(−c/σ1 + δ/σ1) = Φ(−c/σ1) + Φ′(−c/σ1)
δ

σ1
+O

(
δ2
)
,
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where Φ′(−c/σ1) = ϕ(−c/σ1) = ϕ(c/σ1) and ϕ′ (−c/σ1) = − (−c/σ1)ϕ (−c/σ1) = ϕ(c/σ1)c/σ1 by the

properties of the Gaussian pdf and cdf (in particular, note that Φ′ (x) = ϕ (x), ϕ (x) = ϕ (−x) and

ϕ′ (x) = −xϕ (x)). Hence,

I1 = (γE − γR)σ1ϕ(c/σ1)c/σ
2
1βs = (γE − γR)ϕ(c/σ1)c/σ1βs,

and

I2 = (γE − γR)σ
−1
1 ϕ (c/σ1) vs.

Thus,

CMR1 (s) = {γR + (γE − γR) Φ(−c/σ1)}βs + (γE − γR)ϕ (c/σ1)σ
−1
1 (cβs + vs) .

Proof of Proposition 3.4. The result for h = 0 is immediate, so we focus on h ≥ 1. For any

such value of h, using the same arguments as in Appendix B.4 (proof of Proposition B.2), we can show

that

bh (s) =
E (yt+hε1t|St−1 = s)

E
(
ε21t|St−1 = s

) = (γ̄)h−1 b1 (s) ,

using the fact that γt is i.i.d. since it is a function of ε1t. Thus, we focus on deriving b1 (s) =

E(yt+1ε1t|St−1=s)

E(ε21t|St−1=s)
. Note that the denominator of b1 (s) is equal to σ2

1 under our assumptions, so it is

sufficient to derive E (yt+1ε1t|St−1 = s). Replacing yt+1 by equation (3) in the main text, we write

E (yt+1ε1t|St−1 = s) = E ((βtε1t+1 + γtyt + ε2t+1) ε1t|St−1 = s) = E(γtytε1t|St−1 = s),

since E (βtε1t+1ε1t|St−1 = s) = E (ε2t+1ε1t|St−1 = s) = 0. But since γt = γR + (γE − γR)St,

E(γtytε1t|St−1 = s) = (γE − γR)E (Stytε1t|St−1 = s) + γRE (ytε1t|St−1 = s) ≡ (γE − γR)A1 + γRA2.

It follows that

A1 ≡ E (ε1tStyt|St−1 = s)

= E (ε1tSt (βt−1ε1t + γt−1yt−1 + ε2t) |St−1 = s)

= E
(
ε21tSt|St−1 = s

)
βs + E (ε1tStγt−1yt−1|St−1 = s) + E (ε1tε2tSt|St−1 = s)

= E
(
ε21tSt

)
βs + E (ε1tSt)E (γt−1yt−1|St−1 = s)︸ ︷︷ ︸

≡vs

+ 0,

where E (ε1tε2tSt|St−1 = s) = 0 by the fact that ε1tSt is independent of ε2t under Assumptions 1 and

3. Similarly, we can write E (ε1tStγt−1yt−1|St−1 = s) = E (ε1tSt) vs, where vs ≡ E (V0t|St−1 = s) =

E(γt−1yt−1|St−1 = s). Next, we compute E (ε1tSt) and E
(
ε21tSt

)
using the fact that ε1t is Gaussian.
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By definition of St = 1 (ε1t > c), and the truncated moments of the Gaussian distribution, we obtain

that

E (ε1tSt) = σ1E (ε1t/σ11 (ε1t/σ1 > c/σ1)) = σ1ϕ (c/σ1) .

Similarly,

E
(
ε21tSt

)
= E

(
ε21t1 (ε1t > c)

)
= σ2

1[Φ (−c/σ1) + c/σ1ϕ (c/σ1)].

Thus
A1

σ2
1

= [Φ (−c/σ1) + c/σ1ϕ (c/σ1)]βs + σ−1
1 ϕ (c/σ1) vs.

Since we can also show that

A2

σ2
1

= σ−2
1 E (ytε1t|St−1 = s) = σ−2

1 E ((βt−1ε1t + γt−1yt−1 + ε2t)ε1t|St−1 = s) = βs,

it follows that

b1 (s) = (γE − γR)
A1

σ2
1

+ γR
A2

σ2
1

= (γE − γR) {[Φ (−c/σ1) + c/σ1ϕ (c/σ1)]βs + σ−1
1 ϕ (c/σ1) vs}+ γRβs

= {γRβs + (γE − γR) Φ (−c/σ1)}βs + (γE − γR)σ
−1
1 ϕ (c/σ1) (cβh̄ + vs)

= CMR1 (s) .

B Generalization of Propositions 3.1 and 3.2

Here, we show that the results in Section 3.1 extend to a multivariate version of our model for

zt = (xt, y
′
t)
′ when St is exogenous.

B.1 Multivariate state-dependent structural VAR model

Let zt ≡ (xt, y
′
t)
′ denote an n × 1 vector of strictly stationary time series, where yt is k × 1 with

k = n− 1. We consider a structural state-dependent VAR process of the form

Ct−1zt = µt−1 +Bt−1 (L) zt−1 + εt, (5)

where εt = (ε1t, ε
′
2t)

′ defines the vector of mutually independent structural shocks. Let

Bt−1 (L) = B1,t−1 +B2,t−1L+ . . .+Bp,t−1L
p−1,
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where p denotes the polynomial lag order. For later convenience, we partition Bt−1 (L) conformably

with zt as

Bt−1 (L) =

(
B11,t−1 (L) B12,t−1 (L)

B21,t−1 (L) B22,t−1 (L)

)
where Aij denotes the (i, j) block of any partitioned matrix A.

All model coefficients evolve over time depending on the state of the economy. In particular, as in

the main text, we let

µt−1 = µESt−1 + µR (1− St−1) ,

Ct−1 = CESt−1 + CR (1− St−1) , and

Bj,t−1 = BjESt−1 +BjR (1− St−1) for j = 1, . . . , p,

where St−1 is a binary stationary time series that takes the value 1 if the economy is in expansion

and 0 otherwise. To identify the conditional impulse response function of yt+h to a shock in ε1t, we

assume that

Ct−1 =

(
1 0

−C21,t−1 C22,t−1

)
, (6)

where C21,t−1 is k × 1 and C22,t−1 is a k × k non-singular matrix whose diagonal elements are 1 by a

standard normalization condition. Under these assumptions, xt is predetermined with respect to yt.

Note that we do not restrict C22,t−1 to be lower triangular, which allows Ct−1 to be block recursive.

Hence, the model is only partially identified in that only the responses to ε1t are identified.

Model (5) covers several empirically relevant strategies for identifying the structural shock ε1t (and

the corresponding conditional response function for yt+h with respect to ε1t). One is the narrative

approach to identification which uses information extraneous to the model to measure ε1t, in which

case xt = ε1t (as in the main text). Alternatively, the structural shock ε1t may be identified via an

exclusion restriction that precludes xt from responding contemporaneously to the structural shocks in

the remaining variables of the system. In this case, the structural shock ε1t is identified within the

nonlinear structural VAR model by analogy to Blanchard and Perotti (2002), whose exogenous shocks

to government spending (ε1t) are identified by assuming that government spending (xt) does not react

within the period to shocks to output and tax revenues (yt). Finally, note that our general model also

accommodates the special case of xt being an exogenous serially correlated observable variable, as in

Alloza, Gonzalo and Sanz (2021).
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The structural model for zt can be written as
xt = µ1,t−1 +B11,t−1 (L)xt−1 +B12,t−1 (L) yt−1 + ε1t

C22,t−1yt = µ2,t−1 + C21,t−1xt +B21,t−1 (L)xt−1 +B22,t−1 (L) yt−1 + ε2t.

(7)

Without further restrictions (such as postulating that C22,t−1 is lower triangular), the parameters in

the equations for yt are not identified. However, the fact that ε1t is identified suffices to identify the

conditional response function of yt to a one-time shock in ε1t.

As in Section 3.1, we assume that St−1 is a function only of qt (and its lags), where qt is assumed

to be exogenous with respect to the structural shocks ε1t and ε2t. More specifically, to complete the

model, we let

St = η (qr : r ≤ t) . (8)

We make the following additional assumptions.

Assumption B.1 {ε1t} and {ε2t} are mutually independent structural shocks such that εt ≡ (ε1t, ε
′
2t)

′ ∼

i.i.d.(0,Σ), where Σ is a diagonal matrix with diagonal elements given by σ2
i for i = 1, . . . , n. In ad-

dition, yt is strictly stationary and ergodic.

Assumption B.2 {qt} is independent of {ε1t} and {ε2t}.

Assumption B.1 is the generalization of Assumption 1 in Section 3.1 to the multivariate model

where ε2t is a k × 1 vector. Assumption B.2 is the analogue of Assumption 2.

B.2 Conditional impulse response functions

In this section, we derive the analogue of Proposition 3.1 in the main text for the multivariate model

considered in (7) and (8). We obtain this result by first deriving the potential outcomes yt+h (e) and

then using these to obtain closed-form expressions for CARh (δ, s) and CMRh (δ, s).

B.2.1 Potential outcomes

To derive the potential outcomes yt+h (e), we first obtain the reduced-form model corresponding to our

structural model (7) (which is given by (5) with the identification restriction that xt is predetermined

with respect to ε1t). Since Ct−1 satisfies the identification condition (6), the inverse matrix of Ct−1

exists and is given by

C−1
t−1 =

(
1 0

C−1
22,t−1C21,t−1 C−1

22,t−1

)
≡

(
1 0

C21
t−1 C22

t−1

)
,
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where for any matrix A, we let Aij denote the block (i, j) of A−1.

Pre-multiplying (5) by C−1
t−1 yields

zt = C−1
t−1µt−1 + C−1

t−1Bt−1 (L) zt−1 + C−1
t−1εt,

which we rewrite as

zt = bt−1 +At−1 (L) zt−1 + ηt, (9)

where ηt ≡ C−1
t−1εt, bt−1 ≡ C−1

t−1µt−1, and

At−1 (L) ≡ C−1
t−1Bt−1 (L) = A1,t−1 +A2,t−1L+ . . .+Ap,t−1L

p−1,

with Aj,t−1 ≡ C−1
t−1Bj,t−1.

The potential outcome value of yt+h (e) (for any fixed e) can be obtained from the companion-form

representation of the reduced-form model (9) by iteration, fixing ε1t = e. Since only ε1t is fixed at e,

the following decomposition of the reduced-form errors ηt is useful:

ηt ≡ C−1
t−1εt =

(
1

C21
t−1

)
ε1t +

(
0

C22
t−1

)
ε2t ≡ C−1

t−1e1,nε1t + C−1
t−1I2:nε2t,

where e1,n ≡ (1, 0′)′ is n × 1 and I2:n is k × n and is equal to the n × n identity matrix with its first

column removed:

I2:n =
(

e2,n · · · en,n

)
.

We let

ηt (e) = C−1
t−1

(
e

ε2t

)
= C−1

t−1e1,ne+ C−1
t−1I2:nε2t

denote the counterfactual value of ηt for ε1t = e. Similarly, we denote by

zt (e) =

(
xt (e)

yt (e)

)

the counterfactual values of xt and yt. With this notation, we can write the potential outcome analogue

of (9) as

Zt (e) = at−1 +At−1Zt−1 (e) + ξt (e) . (10)

Here,

Zt
np×1

(e) =
(
z′t (e) , z

′
t−1 (e) , . . . , z

′
t−p+1 (e)

)′
, ξt (e)

np×1
=
(
η′t (e) , 0

′)′ , at−1
np×1

=
(
b′t−1, 0

′)′ ,

10



and

At−1
np×np

=


A1,t−1 A2,t−1 · · · Ap−1,t−1 Ap,t−1

In 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0

 .

Note that at−1 and At−1 are not indexed by e because these matrices depend only on St−1, which does

not change with e under the exogeneity assumption on St. To obtain yt (e) from Zt (e), let

Sk
k×np

=
(

0k×1 Ik 0k×n(p−1)

)
denote a k× np selection matrix (with k = n− 1 equal to the number of variables in yt) which selects

the subvector yt from the vector Zt. With this notation,

yt (e) = SkZt (e) ,

and, more generally, for any h,

yt+h (e) = SkZt+h (e) .

Note that for k = 1 (i.e., for a bivariate system with n = 2), Sk = e′2,2p, where e2,2p = (0, 1, 0′) is a

2p× 1 vector whose only non-zero element is equal to 1 and occurs in position 2. More generally, we

let ej,m denote an m× 1 vector with 1 in position j and 0 elsewhere.

Next, we use the companion form (10) to obtain yt+h (e) for different values of h. Starting with

h = 0, we set Zt−1 (e) = Zt−1 since Zt−1 depends on values of zt that occur prior to the shock in ε1t.

Hence, these values do not depend on e and it follows that

yt (e) = SkZt (e) = Skat−1 + SkAt−1Zt−1 + Skξt (e) .

By the definition of ξt (e), we can write

ξt (e) =

(
ηt (e)

0

)
=

(
C−1
t−1e1,ne+ C−1

t−1I2:nε2t

0n(p−1)×1

)
= e1,p ⊗

(
C−1
t−1e1,ne+ C−1

t−1I2:nε2t
)
.

Hence,

Skξt (e) = Sk[e1,p ⊗
(
C−1
t−1e1,ne+ C−1

t−1I2:nε2t
)
]

= Sk[e1,p ⊗
(
C−1
t−1e1,n

)
e] + Sk[e1,p ⊗ (C−1

t−1I2:n)ε2t].

This implies that

yt (e) = Sk[e1,p ⊗
(
C−1
t−1e1,n

)
]e+ Vt,

11



where Vt ≡ Skat−1 + SkAt−1Zt−1 + Sk[e1,p ⊗ (C−1
t−1I2:n)ε2t] is a function of Ut ≡

(
ε′2t, qt−1, Z

′
t−1

)
. We

can obtain yt+h (e) for larger values of h using a similar approach. In particular, for h = 1, we have

that

Zt+1 (e) = at +AtZt (e) + ξt+1,

where ξt+1 =
(
η′t+1, 0

′)′ = ((
C−1
t εt+1

)′
, 0′
)′

and at, At and Ct do not depend on e. This is true

because the model coefficients depend on St, which is not a function of e when St is exogenous, and

εt+1 is independent of e since e is the fixed value of ε1t. Thus,

yt+1 (e) = SkZt+1 (e)

= Skat + SkAtZt (e) + Skξt+1

= Skat + SkAt(at−1 +At−1Zt−1 + ξt (e)) + Skξt+1

= Skat + SkAtat−1 + SkAtAt−1Zt−1 + SkAtξt (e) + Skξt+1,

where ξt (e) = [e1,p ⊗
(
C−1
t−1e1,n

)
]e + Sk[e1,p ⊗ (C−1

t−1I2:n)ε2t]. Inserting ξt (e) into the equation above

and collecting the terms that not depend on e into Vt+1 yields

yt+1 (e) = SkAt[e1,p ⊗
(
C−1
t−1e1,n

)
]e+ Vt+1,

where Vt+1 is a function of Ut+1 ≡
(
εt+1, ε

′
2t, qt, qt−1, Z

′
t−1

)′
. This result shows that the potential

outcome value yt+1 (e) is linear in e, as in the main text. This result generalizes to any h ≥ 1 as

follows:

yt+h (e) = SkAt+h−1 · · ·At[e1,p ⊗
(
C−1
t−1e1,n

)
]e+ Vt+h ≡ mh (e, Ut+h) , (11)

where Vt+h depends on Ut+h ≡
(
εt+h, . . . , εt+1, ε

′
2t, qt+h−1, . . . , qt, qt−1, Z

′
t−1

)′
.

Equation (11) defines the potential outcomes for the vector of dependent variables yt. It represents

a linear function of e under the assumption that St = η (qr : r ≤ t) and qr is strictly exogenous with

respect to ε1t and ε2t.

B.2.2 Closed-form expressions for the conditional response functions

Next, we use (11) to generalize Proposition 3.1 to the multivariate state-dependent structural VAR

model given in (7). For any e,

yt+h (e+ δ)− yt+h (e) = SkAt+h−1 · · ·At[e1,p ⊗
(
C−1
t−1e1,n

)
]δ,
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which implies that letting e = ε1t, and taking the conditional expectation, conditionally on St−1 =

s ∈ {0, 1},

CARh (δ, s) ≡ E (yt+h (ε1t + δ)− yt+h (ε1t) |St−1 = s)

= SkE (At+h−1At+h−2 . . . At|St−1 = s)
(
e1,p ⊗ C−1

s e1,n
)
δ.

We can also use (11) to obtain the conditional marginal response function for this model. Since yt+h (e)

is a linear function of e, it follows that

CARh (δ, s)

δ
= SkE (At+h−1At+h−2 . . . At|St−1 = s)

(
e1,p ⊗ C−1

s e1,n
)
.

This implies that

CMRh (s) =
CARh (δ, s)

δ
= CARh (1, s) ,

showing that the conditional marginal response function coincides with the conditional average re-

sponse function CARh (δ, s) for a shock of size δ = 1.

The following proposition summarizes these results and is the analogue of Proposition 3.1 for the

multivariate model considered in (7). We let C−1
s = C−1

E if s = 1 and C−1
s = C−1

R if s = 0.

Proposition B.1 Assume the structural process is (7) and (8) with St = η (qr : r ≤ t). Under As-

sumptions B.1 and B.2 for s ∈ {0, 1}:

(i) For any fixed δ, CAR0 (δ, s) = Sk
(
e1,p ⊗ C−1

s e1,n
)
δ, and for any h ≥ 1,

CARh (δ, s) = SkE (At+h−1At+h−2 . . . At|St−1 = s)
(
e1,p ⊗ C−1

s e1,n
)
δ.

(ii) For any h ≥ 0, CMRh (s) = CARh (δ, s) /δ = CARh (1, s).

As in the simpler model considered in the main text, Proposition B.1 shows that when St depends

only on {qr : r ≤ t}, i.e., when St is exogenous with respect to the structural shocks εt, the two

definitions of the conditional impulse response function coincide (up to scale). Next, we show that the

state-dependent local projection estimator recovers asymptotically these two notions of conditional

impulse response functions when St is exogenous.

B.3 Local projections estimands

A state-dependent LP regression is a direct regression of yt+h onto a constant, xt and Zt−1, each

interacted with St−1 and 1−St−1. The slope coefficients associated with xtSt−1 are usually interpreted
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as the CAR of yt+h, conditionally on St−1 = 1, whereas the slope coefficients associated with xt(1 −

St−1) are interpreted as the CAR of yt+h when we condition on St−1 = 0. The goal of this section is

to derive the probability limits of these slope coefficients and show that they equal CARh (δ, s) when

δ = 1, which is equal to the CMRh (s) for s ∈ {0, 1}.

Let Wt−1 ≡ (1, Z ′
t−1)

′ denote an (np+ 1)× 1 vector of control variables which include a constant

and p lags of zt. A state-dependent LP for identifying the causal effect on yt+h of a one-time shock in

ε1t of size δ = 1 can be written as

yt+h = bh (1)xtSt−1 +ΠE,hWt−1St−1 + bh (0)xt(1− St−1) + ΠR,hWt−1(1− St−1) + vt+h, (12)

where the k × 1 vectors bh (1) and bh (0) contain the main parameters of interest. The LP regression

for variable yj,t+h is

yj,t+h = bh,j (1)xtSt−1 + π′
E,j,hWt−1St−1 + bh,j (0)xt(1− St−1) + π′

R,j,hWt−1(1− St−1) + vj,t+h, (13)

where j = 2, . . . , n. The scalar coefficients bh,j (1) and bh,j (0) are the (j − 1)th elements of bh (1) and

bh (0), respectively. Similarly, π′
E,j,h and π′

R,j,h are the corresponding rows of ΠE,h and ΠR,h.

Since St is observed, the coefficients in the multivariate state-dependent LP regression (12) can

be obtained by running a multivariate LS regression of yt+h onto xtSt−1, Wt−1St−1, xt (1− St−1) and

Wt−1 (1− St−1). Note that this is equivalent to running a regression of yj,t+h onto xtSt−1, Wt−1St−1,

xt (1− St−1) and Wt−1 (1− St−1), for each j = 2, . . . , n. Put differently, the multivariate LS regression

(12) is equivalent to the k univariate OLS regressions (13), equation-by-equation.

Let b̂h (1) and b̂h (0) denote the LS estimators of bh (1) and bh (0) in (12) based on a sample of size

T given by {yt+h, xt, Zt−1, St−1 : t = 1, . . . , T}. We can estimate each of these vectors separately, by

restricting the sample to St−1 = 1 and St−1 = 0, respectively. For instance, b̂h (1) can be obtained

from a regression of yt+h on xtSt−1 and Wt−1St−1 (omitting xt (1− St−1) and Wt−1 (1− St−1) in

the regression). This follows because St−1 (1− St−1) = 0 for all t. Similarly, we can obtain b̂h (0)

from a regression of yt+h on xt (1− St−1) and Wt−1 (1− St−1) (omitting xtSt−1 and Wt−1St−1 in this

regression).

Our next result generalizes Proposition 3.2. to the multivariate structural VAR model given in (7)

and (8).

Proposition B.2 Consider the structural process (7) and (8) with St = η (qr : r ≤ t). If Assumptions

B.1 and B.2 hold, then for s ∈ {0, 1},

bh (s) ≡ p lim
T→∞

b̂h (s) = CMRh (s) = CARh (1, s) ,

14



where CARh (1, s) is the conditional average response function in Definition 1 with δ = 1.

B.4 Proofs of Propositions B.1 and B.2

Proof of Proposition B.1. The proof for h = 0 and h = 1 is in the text. We omit the proof for

general h since it follows from similar arguments.

Proof of Proposition B.2. We focus on s = 1. To define b̂h (1), let

Y
T×k

=


y′1+h
...

y′T+h

 , X1
T×1

=


x1S0

...

xTST−1

 , and X2
T×(np+1)

=


W ′

0S0

...

W ′
T−1ST−1

 ,

and define M2 = IT −X2 (X
′
2X2)

−1X ′
2.

By the Frisch-Waugh-Lovell (FWL) Theorem, b̂h (1)
′ = (X ′

1M2X1)
−1X ′

1M2Y, or

b̂h (1) = T−1(Y ′M2X1)
(
T−1X ′

1M2X1

)−1 ≡ Q̂1y.2,hQ̂
−1
11.2.

A similar expression holds for b̂h (0) with the difference that the regressors xt and Wt−1 are interacted

with 1− St−1 rather than St−1.

Our goal is to derive the probability limit of b̂h (1) (and b̂h (0)) as T → ∞. We can write

Q̂11.2 = T−1X ′
1X1 − T−1X ′

1X2

(
T−1X ′

2X2

)−1
T−1X ′

2X1, and

Q̂1y.2,h = T−1Y ′X1 − T−1Y ′X2

(
T−1X ′

2X2

)−1
T−1X ′

2X1.

If a law of large numbers applies to each term1,

Q̂11.2
p→ Q11.2 ≡ E

(
x2tSt−1

)
− E

(
xtSt−1W

′
t−1

)
[E
(
Wt−1W

′
t−1St−1

)
]−1E (Wt−1St−1xt) , and

Q̂1y.2,h
p→ Q1y.2,h ≡ E (yt+hxtSt−1)− E

(
yt+hSt−1W

′
t−1

)
[E
(
Wt−1W

′
t−1St−1

)
]−1E (Wt−1St−1xt) .

We distinguish two cases: (i) xt = ε1t, and (ii) xt = µ1,t−1+B11,t−1 (L)xt−1+B12,t−1 (L) yt−1+ε1t =

α′
t−1Wt−1+ε1t (where αt−1 is a state-dependent vector that collects the coefficients of µ1,t−1, B11,t−1 (L)

and B12,t−1 (L)).

In case (i), it is easy to see that E
(
xtSt−1W

′
t−1

)
= 0 under the assumption that xt = ε1t is i.i.d.

1This follows under the assumption that zt is strictly stationary and ergodic and that the usual moment and rank
conditions on the regressors are satisfied. We leave these as implicit high level assumptions since our focus here is on
the conditions that St needs to satisfy in order for the LP estimator to be consistent. Kole and van Dijk (2021) (and
references therein) provide primitive conditions for stationarity and ergodicity of a Markov Switching SVAR model when
the states St are assumed to be a first-order exogenous Markov process. Deriving analogous primitive conditions for our
setting, when the process for the exogenous St is not specified, is beyond the scope of this paper.
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and independent of ε2t. Thus,

Q11.2 = E
(
x2tSt−1

)
and Q1y.2,h = E (yt+hxtSt−1) ,

implying that2

b̂h (1)
p→ bh (1) ≡ E (yt+hxtSt−1) [E

(
x2tSt−1

)
]−1 = E (yt+hxt|St−1 = 1) [E

(
x2t |St−1 = 1

)
]−1.

In case (ii), we can show that

Q11.2 = E
(
ε21tSt−1

)
= Pr (St−1 = 1)E

(
ε21t|St−1 = 1

)
and

Q1y.2,h = E (yt+hε1tSt−1) = Pr (St−1 = 1)E (yt+hε1t|St−1 = 1) ,

implying that b̂h (1) = E (yt+hε1t|St−1 = 1) [E
(
ε21t|St−1 = 1

)
]−1. Heuristically, this follows because

by the FWL theorem, and conditioning on St−1 = 1, the slope coefficient associated with xt from

regressing yt+h on xt and Wt−1 can be obtained in two steps. First, we regress xt on Wt−1 (interacted

with St−1) and obtain the residual. Under our identification condition, this is ε1t. Then, we regress

yt+h on ε1t (interacted with St−1). More specifically, note that

E
(
xtSt−1W

′
t−1

)
= E

(
α′
t−1Wt−1W

′
t−1St−1

)
+ E

(
ε1tSt−1W

′
t−1

)
= E

(
α′
t−1Wt−1W

′
t−1St−1

)
,

since E
(
ε1tSt−1W

′
t−1

)
= 0 by Assumption B.1. It follows that

E
(
xtSt−1W

′
t−1

)
= α′

EE
(
Wt−1W

′
t−1|St−1 = 1

)
Pr (St−1 = 1) .

Hence, the term E
(
xtSt−1W

′
t−1

)
[E
(
Wt−1W

′
t−1St−1

)
]−1E (Wt−1St−1xt) equals

α′
EE

(
Wt−1W

′
t−1|St−1 = 1

)
[E
(
Wt−1W

′
t−1|St−1 = 1

)
]−1E

(
Wt−1W

′
t−1|St−1 = 1

)
αE Pr (St−1 = 1)

= α′
EE

(
Wt−1W

′
t−1|St−1 = 1

)
αE Pr (St−1 = 1)

= E
(
α′
t−1Wt−1W

′
t−1αt−1|St−1 = 1

)
Pr (St−1 = 1) .

Since x2t =
(
α′
t−1Wt−1 + ε1t

)2
= α′

t−1Wt−1W
′
t−1αt−1 +2α′

t−1Wt−1ε1t + ε21t, where the second term has

a conditional mean of zero, it follows that

Q11.2 = Pr (St−1 = 1)E
(
ε21t|St−1 = 1

)
.

2This result is consistent with the fact that when xt is a directly observed shock we can simply regress yt+h onto
xtSt−1 to obtain a consistent estimator of bE,h. When xt = ε1t, adding the controls Wt−1St−1 is not required for
consistency, but can be important for efficiency.
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One can use similar arguments to show that

Q1y.2,h = Pr (St−1 = 1)E (yt+hε1t|St−1 = 1) .

Thus, both in cases (i) and (ii), we conclude that

b̂h (1)
p→ bh (1) = E (yt+hε1t|St−1 = 1) [E

(
ε21t|St−1 = 1

)
]−1 ≡ NhD,

where Nh stands for numerator and D is the denominator. Next, we express Nh and D in terms of

the model parameters. To evaluate Nh, we use the fact that for any h, yt+h = SkZt+h, where Zt+h is

obtained from the companion-form representation of the model given by (10).

Consider first h = 0. Then

Zt = at−1 +At−1Zt−1 + ξt,

where

ξt =

(
ηt

0

)
=

(
C−1
t−1e1,nε1t + C−1

t−1I2:nε2t

0

)
= (e1,p ⊗ C−1

t−1e1,n)ε1t + e1,p ⊗ C−1
t−1I2:nε2t,

given that ηt = C−1
t−1εt and εt = C−1

t−1e1,nε1t + C−1
t−1I2:nε2t, where e1,n and I2:n are as defined in

Section B.2. Hence,

yt = SkZt = Sk(e1,p ⊗ C−1
t−1e1,n)ε1t + Sk(at−1 +At−1Zt−1) + Sk(e1,p ⊗ C−1

t−1I2:nε2t). (14)

Using this decomposition of yt, we can write N0 = E (ytε1t|St−1 = 1) = N0,1 +N0,2 +N0,3, where

N0,1 = E[Sk(e1,p ⊗ C−1
t−1e1,n)ε

2
1t|St−1 = 1],

N0,2 = E[Sk(at−1 +At−1Zt−1)ε1t|St−1 = 1], and

N0,3 = E[Sk(e1,p ⊗ C−1
t−1I2:nε2t)ε1t|St−1 = 1].

Under Assumption B.1 and applying repeatedly the law of iterated expectations (LIE), it can be shown

that N0,2 = N0,3 = 0, implying that N0 ≡ E (ytε1t|St−1 = 1) = N0,1. Thus,

N0 = Sk(e1,p ⊗ C−1
E e1,n)E

(
ε21t|St−1 = 1

)
.

Since bh (1) ≡ N0D, for h = 0, where D ≡ [E
(
ε21t|St−1 = 1

)
]−1, this implies the result. A similar

argument shows that

b̂h (0)
p→ bh (0) = Sk(e1,p ⊗ C−1

R e1,n) for h = 0.
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Next, we consider h = 1. Now,

b̂h (1)
p→ bh (1) ≡ E (yt+1ε1t|St−1 = 1) [E

(
ε21t|St−1 = 1

)
]−1 ≡ N1D when h = 1.

To obtain N1, we can use the fact that

yt+1 = SkZt+1 = Sk(at +AtZt + ξt+1)

= Sk(at +At(at−1 +At−1Zt−1 + ξt) + ξt+1)

= SkAtξt + Sk(at +At(at−1 +At−1Zt−1)) + Skξt+1, (15)

where ξs = (e1,p ⊗ C−1
s−1e1,n)ε1s + e1,p ⊗ C−1

s−1I2:nε2s for s = t, t + 1. This implies that N1 ≡

E (yt+1ε1t|St−1 = 1) = N1,1 +N1,2 +N1,3, where

N1,1 = E(SkAtξtε1t|St−1 = 1),

N1,2 = E[Sk(at +At(at−1 +At−1Zt−1))ε1t|St−1 = 1], and

N1,3 = E[Skξt+1ε1t|St−1 = 1].

Given the definition of ξt+1, we can easily see that N1,3 = 0 by Assumption B.1, since it implies that

E
(
ξt+1|F t

)
= 0. To conclude that N1,2 = 0, we use the exogeneity condition on St, i.e. the fact

that St = η (qs : s ≤ t) with qs satisfying Assumption B.2. Under these assumptions, St and ε1t are

mutually independent, implying that by the LIE, we can write

N1,2 = E[Sk(at +At(at−1 +At−1Zt−1))E
(
ε1t|F t−1, St

)
|St−1 = 1],

where F t−1 = σ (zt−1, St−1, zt−2, St−2, . . .). Since E
(
ε1t|F t−1, St

)
= E (ε1t) = 0, we obtain that

N1,2 = 0. Hence, N1 = N1,1. The result follows because we can show that

N1,1 = E[SkAt(e1,p ⊗ C−1
t−1e1,n)ε

2
1t|St−1 = 1],

under Assumption B.1 and B.2. More specifically, using the definition of ξt, N1,1 can be decomposed

as follows:

N1,1 = E[SkAt(e1,p ⊗ C−1
t−1e1,n)ε

2
1t|St−1 = 1] + E[SkAt(e1,p ⊗ C−1

t−1I2:nε2tε1t)|St−1 = 1],

where E
(
ε1tε2t|St,F t−1

)
= E (ε1tε2t) = 0 under our assumptions. This implies that

bh (1)=
E[SkAt(e1,p ⊗ C−1

t−1e1,n)ε
2
1t|St−1 = 1]

E
(
ε21t|St−1 = 1

) .

The result follows because the numerator simplifies to E[SkAt(e1,p⊗C−1
t−1e1,n)|St−1 = 1][E

(
ε21t|St−1 = 1

)
]
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under the assumption that ε1t is i.i.d.
(
0, σ2

1

)
. A similar result holds for bh (0) when h = 1. The proof

for other values of h follows from similar arguments.

C Challenges to generalizing our results to richer models of state

dependence

Our formal results in Section 3.2 restrict attention to models in which St depends only on ε1t. If the LP

method does not work for this simple model, there is no reason why it should work for more complicated

models. However, formally generalizing our analysis to models with states depending on yt (or, more

generally, on past information on the outcome variables zt) is not straightforward. This problem is

analogous to that of obtaining the best forecast of a SETAR model, for which analytical solutions

are not available. The best forecast at time t is E
(
yt+h|F t

)
, the conditional mean of yt+h given

information available at t, where F t = σ (yt, yt−1, . . .). An analytical expression for this conditional

expectation is not available even under Gaussianity. At best, we can obtain an approximation (see

De Gooijer and De Bruin (1998)). In our case, the problem is even more difficult because the impulse

response functions we consider condition only on St−1, making it necessary to integrate out the other

information.

A different strategy would have been to follow Angrist and Pischke (2009, Chapter 3, p. 78 and p.

110) in obtaining the probability limit of the LP estimator by replacing Assumption 3 with suitable

high-level assumptions on the conditional mean function gh (e, s) ≡ E (yt+h|ε1t = e, St−1 = s) and on

the distribution of ε1t. It can be shown that in this case the state-dependent LP estimator is a weighted

average of g′h (e, s) ≡ ∂gh (e, s) /∂e, provided this derivative exists. The literature that interprets the

OLS estimator as a weighted average of the slope coefficients typically assumes the differentiability

of the conditional mean function (or of the potential outcomes) and bounded support for the error

term (see e.g. Graham and Pinto (2022) and Rambachan and Shephard (2021)). The challenge is

that these high-level assumptions may not hold for the models used in applied work. In practice, the

conditional mean function may not be differentiable if it involves indicator functions, or its limit may

not be defined, calling into question these assumptions. Moreover, even when differentiability is not

a concern, the weighted average derivative recovered by the state-dependent LP estimator will differ

from both the CAR and the CMR if the support of the error term is bounded. This is the case,

for example, for the processes we examined in Sections 3.1 and 3.2, suggesting that this alternative

method of proof is less general than it may have seemed at first sight. While it may be possible to come

up with alternative conditions under which the state-dependent LP estimator recovers the weighted

average derivative, it is not clear what those conditions might be, nor can it be taken for granted that
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the implied weighted average derivative would correspond to conventional measures of the CAR and

the CMR, which is why we do not pursue this question in the current paper.
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D Parameters for the data generating process in Section 5

The data generating process in Section 5 uses the following parameter values obtained by fitting the

model to the quarterly data used in Ramey and Zubairy (2018), assuming that a recession corresponds

to periods when unemployment is above the historical mean:

CE=

 1 0 0

−0.0097 1 0

0.0056 0.0371 1

 , CR =

 1 0 0

−0.0495 1 0

−0.0510 −0.2134 1

 , kE =

 0

0.0034

0.0177

, kR =

 0

0.0145

0.1007

 ,

AE,1 = C−1
E BE,1 =

 −0.1741 0 0

0.0317 0.8185 −0.0437

−0.0586 0.7540 1.4140

 , AE,2 =

 0.4266 0 0

0.1107 −0.0105 0.1177

0.0296 −0.7467 −0.4706

 ,

AE,3 =

 0.4065 0 0

0.0889 0.2965 −0.1358

0.0168 −0.3586 0.0918

 , AE,4 =

 0.3633 0 0

0.0774 −0.1165 0.0595

0.0535 0.3428 −0.0505

 ,

AR,1 =

 0.2952 0 0

0.0088 1.6449 0.1237

0.0098 0.0450 1.4823

 , AR,2 =

 −0.0854 0 0

0.0463 −0.8551 −0.1995

−0.0051 −0.0752 −0.7047

 ,

AR,3 =

 0.1670 0 0

0.0107 0.2722 0.0245

−0.0154 0.0911 0.2347

 , AR,4 =

 −0.0331 0 0

−0.0019 −0.0869 0.0410

0.0476 −0.0333 −0.1174

 .
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E Additional simulation results

This appendix contains additional simulation results. Figures D.1 and D.2 report simulation results

when γE = 0.9, γR = −0.1 in DGP 1 and DGP 2. Figures D.3 and D.4 report the cumulative

government spending multiplier for δ ∈ {−1,−5,−10}.
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Figure D.1: Asymptotic bias of LP response when St = 1 (yt > 0)
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Figure D.2: LP response and decomposition of CAR when St = 1 (yt > 0) and δ = 5
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Figure D.3: Cumulative spending multiplier when St = 1 (yt > 1)
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Figure D.4: Cumulative spending multiplier when St = 1 (yt > MA(12))
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