For online publication:

Appendix to "State-dependent local projections"*

Sílvia Gonçalves ${ }^{\dagger}$ Ana María Herrera ${ }^{\ddagger}$ Lutz Kilian ${ }^{\S}$ and Elena Pesavento ${ }^{\mathbb{I}}$

January 11, 2024

This online appendix consists of four appendices. Appendix A contains the proofs of the main propositions in the paper. Appendix B provides additional theoretical results for a multivariate statedependent structural VAR model when S_{t} is exogenous. These results generalize Propositions 3.1 and 3.2 in the main text to a multivariate setting where $\varepsilon_{1 t}$ is identified within the structural VAR model. Appendix C discusses the challenges in generalizing our formal results to richer models of state dependence. Appendix D describes the parameter values used in the data generating process of Section 5. Finally, Appendix E contains additional simulation results.

[^0]
A Proofs of the main propositions

The proof of our results relies on the independence between the potential outcomes $y_{t+h}(e)$ and the structural error $\varepsilon_{1 t}$. This independence condition follows straightforwardly from our assumptions and is instrumental in providing a causal interpretation to the state-dependent LP estimands. We summarize this result in the following lemma.

Lemma A. 1 Consider the structural process defined by equations (3) and (4) in the main text. Under Assumptions 1 and 2, $\varepsilon_{1 t}$ is independent of $\left\{y_{t+h}(e), e \in A\right\}$, where A is the support of $\varepsilon_{1 t}$.

Proof of Lemma A.1. This proof is obvious given the definitions of $y_{t+h}(e)$ derived in the main text.

Proof of Proposition 3.1. The proof is in the text.
Proof of Proposition 3.2. The proof is in the text.
Proof of Proposition 3.3. We start by deriving the potential outcomes $y_{t+h}(e)$ for this model. For any e, define

$$
\beta(e)=\beta_{R}+\left(\beta_{E}-\beta_{R}\right) \eta(e) \text { and } \gamma(e)=\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right) \eta(e),
$$

with $\eta(e)=1(e>c)$ for any fixed e. Let $V_{0 t} \equiv \gamma_{t-1} y_{t-1}+\varepsilon_{2 t}$ be a function of $\left(\varepsilon_{2 t}, y_{t-1}, \varepsilon_{1 t-1}\right)=$ $\left(\varepsilon_{2 t}, z_{t-1}^{\prime}\right) \equiv U_{t}^{\prime}$, since $x_{t}=\varepsilon_{1 t}$ and $z_{t}^{\prime}=\left(x_{t}, y_{t}\right)$. With this notation, for $h=0, y_{t}=\beta_{t-1} \varepsilon_{1 t}+V_{0 t}$. The potential outcome for $h=0$ is obtained from this equation by fixing $\varepsilon_{1 t}=e$:

$$
y_{t}(e)=\beta_{t-1} e+V_{0 t} \equiv m_{0}\left(e, U_{t}\right),
$$

with $U_{t} \equiv\left(\varepsilon_{2 t}, z_{t-1}^{\prime}\right)^{\prime}$. For $h=1, y_{t+1}=\beta_{t} \varepsilon_{1 t+1}+\gamma_{t} y_{t}+\varepsilon_{2 t+1}$, where $y_{t}=y_{t}\left(\varepsilon_{1 t}\right), \beta_{t}=\beta\left(\varepsilon_{1 t}\right)$ and $\gamma_{t}=\gamma\left(\varepsilon_{1 t}\right)$. Hence, upon fixing $\varepsilon_{1 t}=e$, we have that

$$
y_{t+1}(e)=\beta(e) \varepsilon_{1 t+1}+\gamma(e) y_{t}(e)+\varepsilon_{2 t+1},
$$

which shows that $y_{t+1}(e)$ can be obtained from $y_{t}(e)$. Replacing $y_{t}(e)=\beta_{t-1} e+V_{0 t}$,

$$
\begin{equation*}
y_{t+1}(e)=\gamma(e) \beta_{t-1} e+V_{t+1}(e) \equiv m_{1}\left(e, U_{t+1}\right), \tag{1}
\end{equation*}
$$

where

$$
V_{t+1}(e)=\gamma(e) V_{0 t}+\beta(e) \varepsilon_{1 t+1}+\varepsilon_{2 t+1} \equiv V_{1}\left(e, U_{t+1}\right)
$$

with

$$
U_{t+1}=\left(\varepsilon_{t+1}^{\prime}, \varepsilon_{2 t}, z_{t-1}^{\prime}\right)^{\prime} \equiv\left(\varepsilon_{t+1}^{\prime}, U_{t}^{\prime}\right)^{\prime}
$$

For $h=2$, writing $\beta_{t+1} \equiv \beta\left(\varepsilon_{1 t+1}\right)$ and $\gamma_{t+1} \equiv \gamma\left(\varepsilon_{1 t+1}\right)$, it follows that

$$
\begin{aligned}
y_{t+2}(e) & =\beta_{t+1} \varepsilon_{1 t+2}+\gamma_{t+1} y_{t+1}(e)+\varepsilon_{2 t+2} \\
& =\beta_{t+1} \varepsilon_{1 t+2}+\gamma_{t+1}\left[\gamma(e) \beta_{t-1} e+V_{t+1}(e)\right]+\varepsilon_{2 t+2} \\
& =\gamma_{t+1} \gamma(e) \beta_{t-1} e+V_{t+2}(e) \equiv m_{2}\left(e, U_{t+1}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
V_{t+2}(e) & \equiv \gamma_{t+1} V_{t+1}(e)+\beta_{t+1} \varepsilon_{1 t+2}+\varepsilon_{2 t+2} \\
& =\gamma_{t+1}\left[\gamma(e) V_{0 t}+\beta(e) \varepsilon_{1 t+1}+\varepsilon_{2 t+1}\right]+\beta_{t+1} \varepsilon_{1 t+2}+\varepsilon_{2 t+2} \\
& =\gamma_{t+1} \gamma(e) V_{0 t}+\gamma_{t+1} \beta(e) \varepsilon_{1 t+1}+\varepsilon_{2 t+1}+\beta_{t+1} \varepsilon_{1 t+2}+\varepsilon_{2 t+2},
\end{aligned}
$$

which is a function of $U_{t+2} \equiv\left(\varepsilon_{t+2}^{\prime}, \varepsilon_{t+1}^{\prime}, \varepsilon_{2 t}, z_{t-1}^{\prime}\right)^{\prime}=\left(\varepsilon_{t+2}^{\prime}, U_{t+1}^{\prime}\right)^{\prime}$. For any $h>1$,

$$
y_{t+h}(e)=\gamma_{t+h-1} \cdots \gamma_{t+1} \gamma(e) \beta_{t-1} e+V_{t+h}(e) \equiv m_{h}\left(e, U_{t+h}\right),
$$

where

$$
V_{t+h}(e) \equiv \gamma_{t+h-1} V_{t+h-1}(e)+\beta_{t+h-1} \varepsilon_{1 t+h}+\varepsilon_{2 t+h}
$$

and $U_{t+h} \equiv\left(\varepsilon_{t+h}^{\prime}, U_{t+h-1}^{\prime}\right)^{\prime}$.
Next, we show part (i) of the proposition, which derives the conditional average response function for any fixed δ. For $h=0, y_{t}(e+\delta)-y_{t}(e)=\beta_{t-1} \delta$, which does not depend on e. Hence,

$$
C A R_{0}(\delta, s)=E\left(y_{t}\left(\varepsilon_{1 t}+\delta\right)-y_{t}\left(\varepsilon_{1 t}\right) \mid S_{t-1}=s\right)=E\left(\beta_{t-1} \mid S_{t-1}=s\right) \delta=\beta_{s} \delta
$$

For $h=1$, by Definition 1,

$$
C A R_{1}(\delta, s)=E\left(y_{t+1}\left(\varepsilon_{1 t}+\delta\right)-y_{t+1}\left(\varepsilon_{1 t}\right) \mid S_{t-1}=s\right),
$$

where $y_{t+1}\left(\varepsilon_{1 t}\right)$ is equal to $y_{t+1}(e)$ with $e=\varepsilon_{1 t}$ (and similarly for $y_{t+1}\left(\varepsilon_{1 t}+\delta\right)$). We will evaluate $C A R_{1}(\delta, s)$ below, but note that under the simplifying Assumption 3, for any $h>1$, we can write $C A R_{h}(\delta, s)$ as a function of $C A R_{1}(\delta, s)$. Specifically, for $h=2$, we have that

$$
\begin{aligned}
y_{t+2}(e+\delta)-y_{t+2}(e) & =\gamma_{t+1} y_{t+1}(e+\delta)+\beta_{t+1} \varepsilon_{1 t+2}+\varepsilon_{2 t+2}-\left(\gamma_{t+1} y_{t+1}(e)+\beta_{t+1} \varepsilon_{1 t+2}+\varepsilon_{2 t+2}\right) \\
& =\gamma_{t+1}\left[y_{t+1}(e+\delta)-y_{t+1}(e)\right],
\end{aligned}
$$

and more generally for any $h>1$,
$y_{t+h}(e+\delta)-y_{t+h}(e)=\gamma_{t+h-1}\left[y_{t+h-1}(e+\delta)-y_{t+h-1}(e)\right]=\left(\gamma_{t+h-1} \cdots \gamma_{t+1}\right)\left[y_{t+1}(e+\delta)-y_{t+1}(e)\right]$.

By Definition 1, for any $h>1$,

$$
\begin{align*}
C A R_{h}(\delta, s) & =E\left[y_{t+h}\left(\varepsilon_{1 t}+\delta\right)-y_{t+h}\left(\varepsilon_{1 t}\right) \mid S_{t-1}=s\right] \\
& =E\left(\gamma_{t+h-1} \cdots \gamma_{t+1}\right) E\left[y_{t+1}\left(\varepsilon_{1 t}+\delta\right)-y_{t+1}\left(\varepsilon_{1 t}\right) \mid S_{t-1}=s\right] \\
& =(\bar{\gamma})^{h-1} C A R_{1}(\delta, s) \tag{2}
\end{align*}
$$

where we let $\bar{\gamma} \equiv E\left(\gamma_{t+1}\right)$ for any t. The last equality follows from the fact that γ_{t} is a function of $\varepsilon_{1 t}$ and $\varepsilon_{1 t}$ is i.i.d. This implies that we only need to evaluate $C A R_{1}(\delta, s)$ and $\bar{\gamma}$ to obtain the entire conditional average response function. The Gaussianity assumption is instrumental in deriving the closed-form expressions for $\bar{\gamma}$ and $C A R_{1}(\delta, s)$. Under Assumption 3(a) and (b), using (1), for any fixed e,

$$
\begin{aligned}
y_{t+1}(e+\delta)-y_{t+1}(e)= & \gamma(e) \beta_{t-1} \delta \\
& +[\gamma(e+\delta)-\gamma(e)] \beta_{t-1} \delta \\
& +[\gamma(e+\delta)-\gamma(e)] \beta_{t-1} e \\
& +[\gamma(e+\delta)-\gamma(e)] V_{0 t} \\
& +[\beta(e+\delta)-\beta(e)] \varepsilon_{1 t+1} .
\end{aligned}
$$

Next, evaluate this difference at $e=\varepsilon_{1 t}$ and take the expectation, conditionally on $S_{t-1}=s$. It follows that for any fixed δ,

$$
\begin{align*}
C A R_{1}(\delta, s) \equiv & E\left[y_{t+1}\left(\varepsilon_{1 t}+\delta\right)-y_{t+1}\left(\varepsilon_{1 t}\right) \mid S_{t-1}=s\right] \\
= & E\left[\gamma\left(\varepsilon_{1 t}\right) \mid S_{t-1}=s\right] \beta_{s} \delta+\left\{E\left[\left(\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right) \mid S_{t-1}=s\right] \beta_{s} \delta\right. \\
& +E\left[\left(\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right) \varepsilon_{1 t} \mid S_{t-1}=s\right] \beta_{s}+E\left[\left(\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right) V_{0 t} \mid S_{t-1}=s\right] \\
& \left.+E\left[\left(\beta\left(\varepsilon_{1 t}+\delta\right)-\beta\left(\varepsilon_{1 t}\right)\right) \varepsilon_{1 t+1} \mid S_{t-1}=s\right]\right\} \tag{3}
\end{align*}
$$

Note that the last term in (3) has conditional mean zero. This follows by the law of iterated expectations, using the fact that $\varepsilon_{1 t}$ is an i.i.d. zero mean random variable which is independent of $\varepsilon_{2 t}$. Under these assumptions, $V_{0 t}$ is independent of $\varepsilon_{1 t}$, and the second-to-last term can be written as $\left.E\left(\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right)\right] v_{s}$ (where $v_{s}=E\left(V_{0 t} \mid S_{t-1}=s\right)=\gamma_{s} E\left(y_{t-1} \mid S_{t-1}=s\right)$). By using similar
arguments, we can decompose $C A R_{1}(\delta, s)$ into the sum of

$$
\begin{aligned}
\text { Direct effect }= & E\left(\gamma\left(\varepsilon_{1 t}\right)\right) \beta_{s} \delta . \\
\text { Indirect effect }= & E\left[\left(\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right)\right] \beta_{s} \delta \\
& +E\left[\left(\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right) \varepsilon_{1 t}\right] \beta_{s} \\
& +E\left[\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right] v_{s} .
\end{aligned}
$$

This decomposition shows that the first component of $C A R_{1}(\delta, s)$ captures the direct effect of a shock of size δ in $\varepsilon_{1 t}$ on y_{t+h}. Since $\gamma\left(\varepsilon_{1 t}\right)=\gamma_{t}$, this is the effect of a change in $\varepsilon_{1 t}$ on y_{t+h} that keeps γ_{t} constant, as when S_{t} is exogenous. However, in the current model, $S_{t}=\eta\left(\varepsilon_{1 t}\right)$, which means that when we perturb $\varepsilon_{1 t}$ by δ, this also impacts the model parameters at time t. The last three terms in $C A R_{1}(\delta, s)$ capture this "indirect effect" since they depend on the wedge between $\gamma\left(\varepsilon_{1 t}+\delta\right)$ and $\gamma\left(\varepsilon_{1 t}\right)$.

Suppose now that $\varepsilon_{1 t} \sim N\left(0, \sigma_{1}^{2}\right)$, as in Assumption 3(b). Then,
$E\left(\eta\left(\varepsilon_{1 t}+\delta\right)\right)=E\left(1\left(\varepsilon_{1 t}+\delta>c\right)\right)=P\left(\varepsilon_{1 t} / \sigma_{1}>(c-\delta) / \sigma_{1}\right)=1-\Phi\left((c-\delta) / \sigma_{1}\right)=\Phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)$.
and

$$
E\left(\gamma\left(\varepsilon_{1 t}+\delta\right)\right)=\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right) \Phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)
$$

Also, we can show that

$$
\begin{aligned}
E\left[\left(\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right) \varepsilon_{1 t}\right] & =\left(\gamma_{E}-\gamma_{R}\right) E\left[\left(\eta\left(\varepsilon_{1 t}+\delta\right)-\eta\left(\varepsilon_{1 t}\right)\right) \varepsilon_{1 t}\right] \\
& =\left(\gamma_{E}-\gamma_{R}\right) E\left[\left(1\left(\varepsilon_{1 t}+\delta>c\right)-1\left(\varepsilon_{1 t}>c\right)\right) \varepsilon_{1 t}\right] \\
& =\left(\gamma_{E}-\gamma_{R}\right) E\left[\left(1\left((c-\delta) / \sigma_{1}<\varepsilon_{1 t} / \sigma_{1}<c / \sigma_{1}\right)\right) \frac{\varepsilon_{1 t}}{\sigma_{1}}\right] \sigma_{1} \\
& =\left(\gamma_{E}-\gamma_{R}\right) \sigma_{1}\left[\phi\left((c-\delta) / \sigma_{1}\right)-\phi\left(c / \sigma_{1}\right)\right] \\
& =\left(\gamma_{E}-\gamma_{R}\right) \sigma_{1}\left[\phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)-\phi\left(-c / \sigma_{1}\right)\right] .
\end{aligned}
$$

It follows that

$$
\begin{align*}
C A R_{1}(\delta, s)= & E\left[\gamma\left(\varepsilon_{1 t}+\delta\right)\right] \beta_{s} \delta+E\left[\left(\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right) \varepsilon_{1 t}\right] \beta_{s}-E\left[\gamma\left(\varepsilon_{1 t}+\delta\right)-\gamma\left(\varepsilon_{1 t}\right)\right] v_{s} \\
= & \left.\left\{\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right) \Phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)\right\} \beta_{s} \delta+\left(\gamma_{E}-\gamma_{R}\right) \sigma_{1}\left[\phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)-\phi\left(-c / \sigma_{1}\right)\right)\right] \beta_{s} \\
& +\left\{\left(\gamma_{E}-\gamma_{R}\right)\left[\Phi\left(-c / \sigma_{1}+\delta / \sigma\right)-\Phi\left(-c / \sigma_{1}\right)\right] v_{s}\right\} \\
= & \underbrace{\left\{\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right) \Phi\left(-c / \sigma_{1}\right)\right\} \beta_{s} \delta}_{=E\left(\gamma_{t}\right) \beta_{s} \delta=\text { Direct effect }} \\
& +\left\{\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right)\left[\Phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)-\Phi\left(-c / \sigma_{1}\right)\right]\right\} \beta_{s} \delta \\
& +\left\{\left(\gamma_{E}-\gamma_{R}\right) \sigma_{1}\left(\phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)-\phi\left(-c / \sigma_{1}\right)\right)\right\} \beta_{s} \tag{4}\\
& +\left\{\left(\gamma_{E}-\gamma_{R}\right)\left[\Phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)-\Phi\left(-c / \sigma_{1}\right)\right]\right\} v_{s}
\end{align*}
$$

where the last three terms define the indirect effect. Plugging this expression into (2) gives the formula for $C A R_{h}(\delta, s)$ for any $h>1$ and any fixed δ. Note that

$$
\bar{\gamma}=E\left(\gamma_{t}\right)=\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right) \Phi\left(-c / \sigma_{1}\right) \text { for all } t .
$$

To prove part (ii), we use the fact that

$$
\begin{aligned}
C M R_{h}(s) & =\lim _{\delta \rightarrow 0}\left[\delta^{-1} C A R_{h}(\delta, s)\right] \\
& =(\bar{\gamma})^{h-1} \lim _{\delta \rightarrow 0}\left[\delta^{-1} C A R_{1}(\delta, s)\right] \\
& =(\bar{\gamma})^{h-1} C M R_{1}(s),
\end{aligned}
$$

where $C M R_{1}(s)=\lim _{\delta \rightarrow 0} C A R_{1}(\delta, s) / \delta$. In particular, by dividing (4) by δ and taking the limit as $\delta \rightarrow 0$, we get

$$
C M R_{1}(s)=\left\{\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right) \Phi\left(-c / \sigma_{1}\right)\right\} \beta_{s}+I_{0}+I_{1}+I_{2},
$$

where

$$
\begin{aligned}
I_{0} & =\lim _{\delta \rightarrow 0} \delta^{-1}\left\{\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right)\left[\Phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)-\Phi\left(-c / \sigma_{1}\right)\right]\right\} \beta_{s} \delta=0 \\
I_{1} & =\lim _{\delta \rightarrow 0} \delta^{-1}\left\{\left(\gamma_{E}-\gamma_{R}\right) \sigma_{1}\left(\phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)-\phi\left(-c / \sigma_{1}\right)\right)\right\} \beta_{s} \\
I_{2} & =\lim _{\delta \rightarrow 0}\left[\delta^{-1}\left(\gamma_{E}-\gamma_{R}\right)\left[\Phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)-\Phi\left(-c / \sigma_{1}\right)\right]\right] v_{s} .
\end{aligned}
$$

We can evaluate I_{1} and I_{2} by using the following two Taylor expansions of the Gaussian pdf and cdf,

$$
\begin{aligned}
& \phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)=\phi\left(-c / \sigma_{1}\right)+\phi^{\prime}\left(-c / \sigma_{1}\right) \frac{\delta}{\sigma_{1}}+O\left(\delta^{2}\right) \\
& \Phi\left(-c / \sigma_{1}+\delta / \sigma_{1}\right)=\Phi\left(-c / \sigma_{1}\right)+\Phi^{\prime}\left(-c / \sigma_{1}\right) \frac{\delta}{\sigma_{1}}+O\left(\delta^{2}\right)
\end{aligned}
$$

where $\Phi^{\prime}\left(-c / \sigma_{1}\right)=\phi\left(-c / \sigma_{1}\right)=\phi\left(c / \sigma_{1}\right)$ and $\phi^{\prime}\left(-c / \sigma_{1}\right)=-\left(-c / \sigma_{1}\right) \phi\left(-c / \sigma_{1}\right)=\phi\left(c / \sigma_{1}\right) c / \sigma_{1}$ by the properties of the Gaussian pdf and cdf (in particular, note that $\Phi^{\prime}(x)=\phi(x), \phi(x)=\phi(-x)$ and $\left.\phi^{\prime}(x)=-x \phi(x)\right)$. Hence,

$$
I_{1}=\left(\gamma_{E}-\gamma_{R}\right) \sigma_{1} \phi\left(c / \sigma_{1}\right) c / \sigma_{1}^{2} \beta_{s}=\left(\gamma_{E}-\gamma_{R}\right) \phi\left(c / \sigma_{1}\right) c / \sigma_{1} \beta_{s},
$$

and

$$
I_{2}=\left(\gamma_{E}-\gamma_{R}\right) \sigma_{1}^{-1} \phi\left(c / \sigma_{1}\right) v_{s} .
$$

Thus,

$$
C M R_{1}(s)=\left\{\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right) \Phi\left(-c / \sigma_{1}\right)\right\} \beta_{s}+\left(\gamma_{E}-\gamma_{R}\right) \phi\left(c / \sigma_{1}\right) \sigma_{1}^{-1}\left(c \beta_{s}+v_{s}\right) .
$$

Proof of Proposition 3.4. The result for $h=0$ is immediate, so we focus on $h \geq 1$. For any such value of h, using the same arguments as in Appendix B. 4 (proof of Proposition B.2), we can show that

$$
b_{h}(s)=\frac{E\left(y_{t+h} \varepsilon_{1 t} \mid S_{t-1}=s\right)}{E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=s\right)}=(\bar{\gamma})^{h-1} b_{1}(s),
$$

using the fact that γ_{t} is i.i.d. since it is a function of $\varepsilon_{1 t}$. Thus, we focus on deriving $b_{1}(s)=$ $\frac{E\left(y_{t+1} \varepsilon_{1 t} \mid S_{t-1}=s\right)}{E\left(\varepsilon_{1 t}^{2} t S_{t-1}=s\right)}$. Note that the denominator of $b_{1}(s)$ is equal to σ_{1}^{2} under our assumptions, so it is sufficient to derive $E\left(y_{t+1} \varepsilon_{1 t} \mid S_{t-1}=s\right)$. Replacing y_{t+1} by equation (3) in the main text, we write

$$
E\left(y_{t+1} \varepsilon_{1 t} \mid S_{t-1}=s\right)=E\left(\left(\beta_{t} \varepsilon_{1 t+1}+\gamma_{t} y_{t}+\varepsilon_{2 t+1}\right) \varepsilon_{1 t} \mid S_{t-1}=s\right)=E\left(\gamma_{t} y_{t} \varepsilon_{1 t} \mid S_{t-1}=s\right),
$$

since $E\left(\beta_{t} \varepsilon_{1 t+1} \varepsilon_{1 t} \mid S_{t-1}=s\right)=E\left(\varepsilon_{2 t+1} \varepsilon_{1 t} \mid S_{t-1}=s\right)=0$. But since $\gamma_{t}=\gamma_{R}+\left(\gamma_{E}-\gamma_{R}\right) S_{t}$,

$$
E\left(\gamma_{t} y_{t} \varepsilon_{1 t} \mid S_{t-1}=s\right)=\left(\gamma_{E}-\gamma_{R}\right) E\left(S_{t} y_{t} \varepsilon_{1 t} \mid S_{t-1}=s\right)+\gamma_{R} E\left(y_{t} \varepsilon_{1 t} \mid S_{t-1}=s\right) \equiv\left(\gamma_{E}-\gamma_{R}\right) A_{1}+\gamma_{R} A_{2}
$$

It follows that

$$
\begin{aligned}
A_{1} & \equiv E\left(\varepsilon_{1 t} S_{t} y_{t} \mid S_{t-1}=s\right) \\
& =E\left(\varepsilon_{1 t} S_{t}\left(\beta_{t-1} \varepsilon_{1 t}+\gamma_{t-1} y_{t-1}+\varepsilon_{2 t}\right) \mid S_{t-1}=s\right) \\
& =E\left(\varepsilon_{1 t}^{2} S_{t} \mid S_{t-1}=s\right) \beta_{s}+E\left(\varepsilon_{1 t} S_{t} \gamma_{t-1} y_{t-1} \mid S_{t-1}=s\right)+E\left(\varepsilon_{1 t} \varepsilon_{2 t} S_{t} \mid S_{t-1}=s\right) \\
& =E\left(\varepsilon_{1 t}^{2} S_{t}\right) \beta_{s}+E\left(\varepsilon_{1 t} S_{t}\right) \underbrace{E\left(\gamma_{t-1} y_{t-1} \mid S_{t-1}=s\right)}_{\equiv v_{s}}+0,
\end{aligned}
$$

where $E\left(\varepsilon_{1 t} \varepsilon_{2 t} S_{t} \mid S_{t-1}=s\right)=0$ by the fact that $\varepsilon_{1 t} S_{t}$ is independent of $\varepsilon_{2 t}$ under Assumptions 1 and 3. Similarly, we can write $E\left(\varepsilon_{1 t} S_{t} \gamma_{t-1} y_{t-1} \mid S_{t-1}=s\right)=E\left(\varepsilon_{1 t} S_{t}\right) v_{s}$, where $v_{s} \equiv E\left(V_{0 t} \mid S_{t-1}=s\right)=$ $E\left(\gamma_{t-1} y_{t-1} \mid S_{t-1}=s\right)$. Next, we compute $E\left(\varepsilon_{1 t} S_{t}\right)$ and $E\left(\varepsilon_{1 t}^{2} S_{t}\right)$ using the fact that $\varepsilon_{1 t}$ is Gaussian.

By definition of $S_{t}=1\left(\varepsilon_{1 t}>c\right)$, and the truncated moments of the Gaussian distribution, we obtain that

$$
E\left(\varepsilon_{1 t} S_{t}\right)=\sigma_{1} E\left(\varepsilon_{1 t} / \sigma_{1} 1\left(\varepsilon_{1 t} / \sigma_{1}>c / \sigma_{1}\right)\right)=\sigma_{1} \phi\left(c / \sigma_{1}\right)
$$

Similarly,

$$
E\left(\varepsilon_{1 t}^{2} S_{t}\right)=E\left(\varepsilon_{1 t}^{2} 1\left(\varepsilon_{1 t}>c\right)\right)=\sigma_{1}^{2}\left[\Phi\left(-c / \sigma_{1}\right)+c / \sigma_{1} \phi\left(c / \sigma_{1}\right)\right] .
$$

Thus

$$
\frac{A_{1}}{\sigma_{1}^{2}}=\left[\Phi\left(-c / \sigma_{1}\right)+c / \sigma_{1} \phi\left(c / \sigma_{1}\right)\right] \beta_{s}+\sigma_{1}^{-1} \phi\left(c / \sigma_{1}\right) v_{s} .
$$

Since we can also show that

$$
\frac{A_{2}}{\sigma_{1}^{2}}=\sigma_{1}^{-2} E\left(y_{t} \varepsilon_{1 t} \mid S_{t-1}=s\right)=\sigma_{1}^{-2} E\left(\left(\beta_{t-1} \varepsilon_{1 t}+\gamma_{t-1} y_{t-1}+\varepsilon_{2 t}\right) \varepsilon_{1 t} \mid S_{t-1}=s\right)=\beta_{s}
$$

it follows that

$$
\begin{aligned}
b_{1}(s) & =\left(\gamma_{E}-\gamma_{R}\right) \frac{A_{1}}{\sigma_{1}^{2}}+\gamma_{R} \frac{A_{2}}{\sigma_{1}^{2}} \\
& =\left(\gamma_{E}-\gamma_{R}\right)\left\{\left[\Phi\left(-c / \sigma_{1}\right)+c / \sigma_{1} \phi\left(c / \sigma_{1}\right)\right] \beta_{s}+\sigma_{1}^{-1} \phi\left(c / \sigma_{1}\right) v_{s}\right\}+\gamma_{R} \beta_{s} \\
& =\left\{\gamma_{R} \beta_{s}+\left(\gamma_{E}-\gamma_{R}\right) \Phi\left(-c / \sigma_{1}\right)\right\} \beta_{s}+\left(\gamma_{E}-\gamma_{R}\right) \sigma_{1}^{-1} \phi\left(c / \sigma_{1}\right)\left(c \beta_{\bar{h}}+v_{s}\right) \\
& =C M R_{1}(s)
\end{aligned}
$$

B Generalization of Propositions 3.1 and 3.2

Here, we show that the results in Section 3.1 extend to a multivariate version of our model for $z_{t}=\left(x_{t}, y_{t}^{\prime}\right)^{\prime}$ when S_{t} is exogenous.

B. 1 Multivariate state-dependent structural VAR model

Let $z_{t} \equiv\left(x_{t}, y_{t}^{\prime}\right)^{\prime}$ denote an $n \times 1$ vector of strictly stationary time series, where y_{t} is $k \times 1$ with $k=n-1$. We consider a structural state-dependent VAR process of the form

$$
\begin{equation*}
C_{t-1} z_{t}=\mu_{t-1}+B_{t-1}(L) z_{t-1}+\varepsilon_{t} \tag{5}
\end{equation*}
$$

where $\varepsilon_{t}=\left(\varepsilon_{1 t}, \varepsilon_{2 t}^{\prime}\right)^{\prime}$ defines the vector of mutually independent structural shocks. Let

$$
B_{t-1}(L)=B_{1, t-1}+B_{2, t-1} L+\ldots+B_{p, t-1} L^{p-1}
$$

where p denotes the polynomial lag order. For later convenience, we partition $B_{t-1}(L)$ conformably with z_{t} as

$$
B_{t-1}(L)=\left(\begin{array}{ll}
B_{11, t-1}(L) & B_{12, t-1}(L) \\
B_{21, t-1}(L) & B_{22, t-1}(L)
\end{array}\right)
$$

where $\mathcal{A}_{i j}$ denotes the (i, j) block of any partitioned matrix \mathcal{A}.
All model coefficients evolve over time depending on the state of the economy. In particular, as in the main text, we let

$$
\begin{aligned}
\mu_{t-1} & =\mu_{E} S_{t-1}+\mu_{R}\left(1-S_{t-1}\right), \\
C_{t-1} & =C_{E} S_{t-1}+C_{R}\left(1-S_{t-1}\right), \text { and } \\
B_{j, t-1} & =B_{j E} S_{t-1}+B_{j R}\left(1-S_{t-1}\right) \text { for } j=1, \ldots, p,
\end{aligned}
$$

where S_{t-1} is a binary stationary time series that takes the value 1 if the economy is in expansion and 0 otherwise. To identify the conditional impulse response function of y_{t+h} to a shock in $\varepsilon_{1 t}$, we assume that

$$
C_{t-1}=\left(\begin{array}{cc}
1 & 0 \tag{6}\\
-C_{21, t-1} & C_{22, t-1}
\end{array}\right)
$$

where $C_{21, t-1}$ is $k \times 1$ and $C_{22, t-1}$ is a $k \times k$ non-singular matrix whose diagonal elements are 1 by a standard normalization condition. Under these assumptions, x_{t} is predetermined with respect to y_{t}. Note that we do not restrict $C_{22, t-1}$ to be lower triangular, which allows C_{t-1} to be block recursive. Hence, the model is only partially identified in that only the responses to $\varepsilon_{1 t}$ are identified.

Model (5) covers several empirically relevant strategies for identifying the structural shock $\varepsilon_{1 t}$ (and the corresponding conditional response function for y_{t+h} with respect to $\varepsilon_{1 t}$). One is the narrative approach to identification which uses information extraneous to the model to measure $\varepsilon_{1 t}$, in which case $x_{t}=\varepsilon_{1 t}$ (as in the main text). Alternatively, the structural shock $\varepsilon_{1 t}$ may be identified via an exclusion restriction that precludes x_{t} from responding contemporaneously to the structural shocks in the remaining variables of the system. In this case, the structural shock $\varepsilon_{1 t}$ is identified within the nonlinear structural VAR model by analogy to Blanchard and Perotti (2002), whose exogenous shocks to government spending $\left(\varepsilon_{1 t}\right)$ are identified by assuming that government spending $\left(x_{t}\right)$ does not react within the period to shocks to output and tax revenues $\left(y_{t}\right)$. Finally, note that our general model also accommodates the special case of x_{t} being an exogenous serially correlated observable variable, as in Alloza, Gonzalo and Sanz (2021).

The structural model for z_{t} can be written as

$$
\left\{\begin{array}{l}
x_{t}=\mu_{1, t-1}+B_{11, t-1}(L) x_{t-1}+B_{12, t-1}(L) y_{t-1}+\varepsilon_{1 t} \tag{7}\\
C_{22, t-1} y_{t}=\mu_{2, t-1}+C_{21, t-1} x_{t}+B_{21, t-1}(L) x_{t-1}+B_{22, t-1}(L) y_{t-1}+\varepsilon_{2 t}
\end{array}\right.
$$

Without further restrictions (such as postulating that $C_{22, t-1}$ is lower triangular), the parameters in the equations for y_{t} are not identified. However, the fact that $\varepsilon_{1 t}$ is identified suffices to identify the conditional response function of y_{t} to a one-time shock in $\varepsilon_{1 t}$.

As in Section 3.1, we assume that S_{t-1} is a function only of q_{t} (and its lags), where q_{t} is assumed to be exogenous with respect to the structural shocks $\varepsilon_{1 t}$ and $\varepsilon_{2 t}$. More specifically, to complete the model, we let

$$
\begin{equation*}
S_{t}=\eta\left(q_{r}: r \leq t\right) . \tag{8}
\end{equation*}
$$

We make the following additional assumptions.

Assumption B. $1\left\{\varepsilon_{1 t}\right\}$ and $\left\{\varepsilon_{2 t}\right\}$ are mutually independent structural shocks such that $\varepsilon_{t} \equiv\left(\varepsilon_{1 t}, \varepsilon_{2 t}^{\prime}\right)^{\prime} \sim$ i.i.d. $(0, \Sigma)$, where Σ is a diagonal matrix with diagonal elements given by σ_{i}^{2} for $i=1, \ldots, n$. In addition, y_{t} is strictly stationary and ergodic.

Assumption B. $2\left\{q_{t}\right\}$ is independent of $\left\{\varepsilon_{1 t}\right\}$ and $\left\{\varepsilon_{2 t}\right\}$.

Assumption B. 1 is the generalization of Assumption 1 in Section 3.1 to the multivariate model where $\varepsilon_{2 t}$ is a $k \times 1$ vector. Assumption B. 2 is the analogue of Assumption 2.

B. 2 Conditional impulse response functions

In this section, we derive the analogue of Proposition 3.1 in the main text for the multivariate model considered in (7) and (8). We obtain this result by first deriving the potential outcomes $y_{t+h}(e)$ and then using these to obtain closed-form expressions for $C A R_{h}(\delta, s)$ and $C M R_{h}(\delta, s)$.

B.2.1 Potential outcomes

To derive the potential outcomes $y_{t+h}(e)$, we first obtain the reduced-form model corresponding to our structural model (7) (which is given by (5) with the identification restriction that x_{t} is predetermined with respect to $\varepsilon_{1 t}$). Since C_{t-1} satisfies the identification condition (6), the inverse matrix of C_{t-1} exists and is given by

$$
C_{t-1}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
C_{22, t-1}^{-1} C_{21, t-1} & C_{22, t-1}^{-1}
\end{array}\right) \equiv\left(\begin{array}{cc}
1 & 0 \\
C_{t-1}^{21} & C_{t-1}^{22}
\end{array}\right)
$$

where for any matrix \mathcal{A}, we let $\mathcal{A}^{i j}$ denote the block (i, j) of \mathcal{A}^{-1}.
Pre-multiplying (5) by C_{t-1}^{-1} yields

$$
z_{t}=C_{t-1}^{-1} \mu_{t-1}+C_{t-1}^{-1} B_{t-1}(L) z_{t-1}+C_{t-1}^{-1} \varepsilon_{t}
$$

which we rewrite as

$$
\begin{equation*}
z_{t}=b_{t-1}+A_{t-1}(L) z_{t-1}+\eta_{t} \tag{9}
\end{equation*}
$$

where $\eta_{t} \equiv C_{t-1}^{-1} \varepsilon_{t}, b_{t-1} \equiv C_{t-1}^{-1} \mu_{t-1}$, and

$$
A_{t-1}(L) \equiv C_{t-1}^{-1} B_{t-1}(L)=A_{1, t-1}+A_{2, t-1} L+\ldots+A_{p, t-1} L^{p-1}
$$

with $A_{j, t-1} \equiv C_{t-1}^{-1} B_{j, t-1}$.
The potential outcome value of $y_{t+h}(e)$ (for any fixed e) can be obtained from the companion-form representation of the reduced-form model (9) by iteration, fixing $\varepsilon_{1 t}=e$. Since only $\varepsilon_{1 t}$ is fixed at e, the following decomposition of the reduced-form errors η_{t} is useful:

$$
\eta_{t} \equiv C_{t-1}^{-1} \varepsilon_{t}=\binom{1}{C_{t-1}^{21}} \varepsilon_{1 t}+\binom{0}{C_{t-1}^{22}} \varepsilon_{2 t} \equiv C_{t-1}^{-1} e_{1, n} \varepsilon_{1 t}+C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t},
$$

where $e_{1, n} \equiv\left(1,0^{\prime}\right)^{\prime}$ is $n \times 1$ and $I_{2: n}$ is $k \times n$ and is equal to the $n \times n$ identity matrix with its first column removed:

$$
I_{2: n}=\left(\begin{array}{lll}
e_{2, n} & \cdots & e_{n, n}
\end{array}\right) .
$$

We let

$$
\eta_{t}(e)=C_{t-1}^{-1}\binom{e}{\varepsilon_{2 t}}=C_{t-1}^{-1} e_{1, n} e+C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t}
$$

denote the counterfactual value of η_{t} for $\varepsilon_{1 t}=e$. Similarly, we denote by

$$
z_{t}(e)=\binom{x_{t}(e)}{y_{t}(e)}
$$

the counterfactual values of x_{t} and y_{t}. With this notation, we can write the potential outcome analogue of (9) as

$$
\begin{equation*}
Z_{t}(e)=a_{t-1}+A_{t-1} Z_{t-1}(e)+\xi_{t}(e) . \tag{10}
\end{equation*}
$$

Here,

$$
\underset{n p \times 1}{Z_{t}}(e)=\left(z_{t}^{\prime}(e), z_{t-1}^{\prime}(e), \ldots, z_{t-p+1}^{\prime}(e)\right)^{\prime}, \underset{n p \times 1}{\xi_{t}(e)}=\left(\eta_{t}^{\prime}(e), 0^{\prime}\right)^{\prime}, \underset{n p \times 1}{a_{t-1}}=\left(b_{t-1}^{\prime}, 0^{\prime}\right)^{\prime},
$$

and

$$
\underset{n p \times n p}{A_{t-1}}=\left(\begin{array}{ccccc}
A_{1, t-1} & A_{2, t-1} & \cdots & A_{p-1, t-1} & A_{p, t-1} \\
I_{n} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & I_{n} & 0
\end{array}\right)
$$

Note that a_{t-1} and A_{t-1} are not indexed by e because these matrices depend only on S_{t-1}, which does not change with e under the exogeneity assumption on S_{t}. To obtain $y_{t}(e)$ from $Z_{t}(e)$, let

$$
\underset{k \times n p}{\mathbb{S}_{k}}=\left(\begin{array}{lll}
0_{k \times 1} & I_{k} & 0_{k \times n(p-1)}
\end{array}\right)
$$

denote a $k \times n p$ selection matrix (with $k=n-1$ equal to the number of variables in y_{t}) which selects the subvector y_{t} from the vector Z_{t}. With this notation,

$$
y_{t}(e)=\mathbb{S}_{k} Z_{t}(e)
$$

and, more generally, for any h,

$$
y_{t+h}(e)=\mathbb{S}_{k} Z_{t+h}(e) .
$$

Note that for $k=1$ (i.e., for a bivariate system with $n=2$), $\mathbb{S}_{k}=e_{2,2 p}^{\prime}$, where $e_{2,2 p}=\left(0,1,0^{\prime}\right)$ is a $2 p \times 1$ vector whose only non-zero element is equal to 1 and occurs in position 2 . More generally, we let $e_{j, m}$ denote an $m \times 1$ vector with 1 in position j and 0 elsewhere.

Next, we use the companion form (10) to obtain $y_{t+h}(e)$ for different values of h. Starting with $h=0$, we set $Z_{t-1}(e)=Z_{t-1}$ since Z_{t-1} depends on values of z_{t} that occur prior to the shock in $\varepsilon_{1 t}$. Hence, these values do not depend on e and it follows that

$$
y_{t}(e)=\mathbb{S}_{k} Z_{t}(e)=\mathbb{S}_{k} a_{t-1}+\mathbb{S}_{k} A_{t-1} Z_{t-1}+\mathbb{S}_{k} \xi_{t}(e)
$$

By the definition of $\xi_{t}(e)$, we can write

$$
\xi_{t}(e)=\binom{\eta_{t}(e)}{0}=\binom{C_{t-1}^{-1} e_{1, n} e+C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t}}{0_{n(p-1) \times 1}}=e_{1, p} \otimes\left(C_{t-1}^{-1} e_{1, n} e+C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t}\right) .
$$

Hence,

$$
\begin{aligned}
\mathbb{S}_{k} \xi_{t}(e) & =\mathbb{S}_{k}\left[e_{1, p} \otimes\left(C_{t-1}^{-1} e_{1, n} e+C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t}\right)\right] \\
& =\mathbb{S}_{k}\left[e_{1, p} \otimes\left(C_{t-1}^{-1} e_{1, n}\right) e\right]+\mathbb{S}_{k}\left[e_{1, p} \otimes\left(C_{t-1}^{-1} I_{2: n}\right) \varepsilon_{2 t}\right] .
\end{aligned}
$$

This implies that

$$
y_{t}(e)=\mathbb{S}_{k}\left[e_{1, p} \otimes\left(C_{t-1}^{-1} e_{1, n}\right)\right] e+V_{t}
$$

where $V_{t} \equiv \mathbb{S}_{k} a_{t-1}+\mathbb{S}_{k} A_{t-1} Z_{t-1}+\mathbb{S}_{k}\left[e_{1, p} \otimes\left(C_{t-1}^{-1} I_{2: n}\right) \varepsilon_{2 t}\right]$ is a function of $U_{t} \equiv\left(\varepsilon_{2 t}^{\prime}, q_{t-1}, Z_{t-1}^{\prime}\right)$. We can obtain $y_{t+h}(e)$ for larger values of h using a similar approach. In particular, for $h=1$, we have that

$$
Z_{t+1}(e)=a_{t}+A_{t} Z_{t}(e)+\xi_{t+1},
$$

where $\xi_{t+1}=\left(\eta_{t+1}^{\prime}, 0^{\prime}\right)^{\prime}=\left(\left(C_{t}^{-1} \varepsilon_{t+1}\right)^{\prime}, 0^{\prime}\right)^{\prime}$ and a_{t}, A_{t} and C_{t} do not depend on e. This is true because the model coefficients depend on S_{t}, which is not a function of e when S_{t} is exogenous, and ε_{t+1} is independent of e since e is the fixed value of $\varepsilon_{1 t}$. Thus,

$$
\begin{aligned}
y_{t+1}(e) & =\mathbb{S}_{k} Z_{t+1}(e) \\
& =\mathbb{S}_{k} a_{t}+\mathbb{S}_{k} A_{t} Z_{t}(e)+\mathbb{S}_{k} \xi_{t+1} \\
& =\mathbb{S}_{k} a_{t}+\mathbb{S}_{k} A_{t}\left(a_{t-1}+A_{t-1} Z_{t-1}+\xi_{t}(e)\right)+\mathbb{S}_{k} \xi_{t+1} \\
& =\mathbb{S}_{k} a_{t}+\mathbb{S}_{k} A_{t} a_{t-1}+\mathbb{S}_{k} A_{t} A_{t-1} Z_{t-1}+\mathbb{S}_{k} A_{t} \xi_{t}(e)+\mathbb{S}_{k} \xi_{t+1}
\end{aligned}
$$

where $\xi_{t}(e)=\left[e_{1, p} \otimes\left(C_{t-1}^{-1} e_{1, n}\right)\right] e+\mathbb{S}_{k}\left[e_{1, p} \otimes\left(C_{t-1}^{-1} I_{2: n}\right) \varepsilon_{2 t}\right]$. Inserting $\xi_{t}(e)$ into the equation above and collecting the terms that not depend on e into V_{t+1} yields

$$
y_{t+1}(e)=\mathbb{S}_{k} A_{t}\left[e_{1, p} \otimes\left(C_{t-1}^{-1} e_{1, n}\right)\right] e+V_{t+1},
$$

where V_{t+1} is a function of $U_{t+1} \equiv\left(\varepsilon_{t+1}, \varepsilon_{2 t}^{\prime}, q_{t}, q_{t-1}, Z_{t-1}^{\prime}\right)^{\prime}$. This result shows that the potential outcome value $y_{t+1}(e)$ is linear in e, as in the main text. This result generalizes to any $h \geq 1$ as follows:

$$
\begin{equation*}
y_{t+h}(e)=\mathbb{S}_{k} A_{t+h-1} \cdots A_{t}\left[e_{1, p} \otimes\left(C_{t-1}^{-1} e_{1, n}\right)\right] e+V_{t+h} \equiv m_{h}\left(e, U_{t+h}\right) \tag{11}
\end{equation*}
$$

where V_{t+h} depends on $U_{t+h} \equiv\left(\varepsilon_{t+h}, \ldots, \varepsilon_{t+1}, \varepsilon_{2 t}^{\prime}, q_{t+h-1}, \ldots, q_{t}, q_{t-1}, Z_{t-1}^{\prime}\right)^{\prime}$.
Equation (11) defines the potential outcomes for the vector of dependent variables y_{t}. It represents a linear function of e under the assumption that $S_{t}=\eta\left(q_{r}: r \leq t\right)$ and q_{r} is strictly exogenous with respect to $\varepsilon_{1 t}$ and $\varepsilon_{2 t}$.

B.2.2 Closed-form expressions for the conditional response functions

Next, we use (11) to generalize Proposition 3.1 to the multivariate state-dependent structural VAR model given in (7). For any e,

$$
y_{t+h}(e+\delta)-y_{t+h}(e)=\mathbb{S}_{k} A_{t+h-1} \cdots A_{t}\left[e_{1, p} \otimes\left(C_{t-1}^{-1} e_{1, n}\right)\right] \delta,
$$

which implies that letting $e=\varepsilon_{1 t}$, and taking the conditional expectation, conditionally on $S_{t-1}=$ $s \in\{0,1\}$,

$$
\begin{aligned}
C A R_{h}(\delta, s) & \equiv E\left(y_{t+h}\left(\varepsilon_{1 t}+\delta\right)-y_{t+h}\left(\varepsilon_{1 t}\right) \mid S_{t-1}=s\right) \\
& =\mathbb{S}_{k} E\left(A_{t+h-1} A_{t+h-2} \ldots A_{t} \mid S_{t-1}=s\right)\left(e_{1, p} \otimes C_{s}^{-1} e_{1, n}\right) \delta .
\end{aligned}
$$

We can also use (11) to obtain the conditional marginal response function for this model. Since $y_{t+h}(e)$ is a linear function of e, it follows that

$$
\frac{C A R_{h}(\delta, s)}{\delta}=\mathbb{S}_{k} E\left(A_{t+h-1} A_{t+h-2} \ldots A_{t} \mid S_{t-1}=s\right)\left(e_{1, p} \otimes C_{s}^{-1} e_{1, n}\right)
$$

This implies that

$$
C M R_{h}(s)=\frac{C A R_{h}(\delta, s)}{\delta}=C A R_{h}(1, s)
$$

showing that the conditional marginal response function coincides with the conditional average response function $C A R_{h}(\delta, s)$ for a shock of size $\delta=1$.

The following proposition summarizes these results and is the analogue of Proposition 3.1 for the multivariate model considered in (7). We let $C_{s}^{-1}=C_{E}^{-1}$ if $s=1$ and $C_{s}^{-1}=C_{R}^{-1}$ if $s=0$.

Proposition B. 1 Assume the structural process is (7) and (8) with $S_{t}=\eta\left(q_{r}: r \leq t\right)$. Under Assumptions B. 1 and B. 2 for $s \in\{0,1\}$:
(i) For any fixed $\delta, C A R_{0}(\delta, s)=\mathbb{S}_{k}\left(e_{1, p} \otimes C_{s}^{-1} e_{1, n}\right) \delta$, and for any $h \geq 1$,

$$
C A R_{h}(\delta, s)=\mathbb{S}_{k} E\left(A_{t+h-1} A_{t+h-2} \ldots A_{t} \mid S_{t-1}=s\right)\left(e_{1, p} \otimes C_{s}^{-1} e_{1, n}\right) \delta .
$$

(ii) For any $h \geq 0, C M R_{h}(s)=C A R_{h}(\delta, s) / \delta=C A R_{h}(1, s)$.

As in the simpler model considered in the main text, Proposition B. 1 shows that when S_{t} depends only on $\left\{q_{r}: r \leq t\right\}$, i.e., when S_{t} is exogenous with respect to the structural shocks ε_{t}, the two definitions of the conditional impulse response function coincide (up to scale). Next, we show that the state-dependent local projection estimator recovers asymptotically these two notions of conditional impulse response functions when S_{t} is exogenous.

B. 3 Local projections estimands

A state-dependent LP regression is a direct regression of y_{t+h} onto a constant, x_{t} and Z_{t-1}, each interacted with S_{t-1} and 1- S_{t-1}. The slope coefficients associated with $x_{t} S_{t-1}$ are usually interpreted
as the CAR of y_{t+h}, conditionally on $S_{t-1}=1$, whereas the slope coefficients associated with $x_{t}(1-$ S_{t-1}) are interpreted as the CAR of y_{t+h} when we condition on $S_{t-1}=0$. The goal of this section is to derive the probability limits of these slope coefficients and show that they equal $C A R_{h}(\delta, s)$ when $\delta=1$, which is equal to the $C M R_{h}(s)$ for $s \in\{0,1\}$.

Let $W_{t-1} \equiv\left(1, Z_{t-1}^{\prime}\right)^{\prime}$ denote an $(n p+1) \times 1$ vector of control variables which include a constant and p lags of z_{t}. A state-dependent LP for identifying the causal effect on y_{t+h} of a one-time shock in $\varepsilon_{1 t}$ of size $\delta=1$ can be written as

$$
\begin{equation*}
y_{t+h}=b_{h}(1) x_{t} S_{t-1}+\Pi_{E, h} W_{t-1} S_{t-1}+b_{h}(0) x_{t}\left(1-S_{t-1}\right)+\Pi_{R, h} W_{t-1}\left(1-S_{t-1}\right)+v_{t+h}, \tag{12}
\end{equation*}
$$

where the $k \times 1$ vectors $b_{h}(1)$ and $b_{h}(0)$ contain the main parameters of interest. The LP regression for variable $y_{j, t+h}$ is

$$
\begin{equation*}
y_{j, t+h}=b_{h, j}(1) x_{t} S_{t-1}+\pi_{E, j, h}^{\prime} W_{t-1} S_{t-1}+b_{h, j}(0) x_{t}\left(1-S_{t-1}\right)+\pi_{R, j, h}^{\prime} W_{t-1}\left(1-S_{t-1}\right)+v_{j, t+h}, \tag{13}
\end{equation*}
$$

where $j=2, \ldots, n$. The scalar coefficients $b_{h, j}(1)$ and $b_{h, j}(0)$ are the $(j-1)^{\text {th }}$ elements of $b_{h}(1)$ and $b_{h}(0)$, respectively. Similarly, $\pi_{E, j, h}^{\prime}$ and $\pi_{R, j, h}^{\prime}$ are the corresponding rows of $\Pi_{E, h}$ and $\Pi_{R, h}$.

Since S_{t} is observed, the coefficients in the multivariate state-dependent LP regression (12) can be obtained by running a multivariate LS regression of y_{t+h} onto $x_{t} S_{t-1}, W_{t-1} S_{t-1}, x_{t}\left(1-S_{t-1}\right)$ and $W_{t-1}\left(1-S_{t-1}\right)$. Note that this is equivalent to running a regression of $y_{j, t+h}$ onto $x_{t} S_{t-1}, W_{t-1} S_{t-1}$, $x_{t}\left(1-S_{t-1}\right)$ and $W_{t-1}\left(1-S_{t-1}\right)$, for each $j=2, \ldots, n$. Put differently, the multivariate LS regression (12) is equivalent to the k univariate OLS regressions (13), equation-by-equation.

Let $\hat{b}_{h}(1)$ and $\hat{b}_{h}(0)$ denote the LS estimators of $b_{h}(1)$ and $b_{h}(0)$ in (12) based on a sample of size T given by $\left\{y_{t+h}, x_{t}, Z_{t-1}, S_{t-1}: t=1, \ldots, T\right\}$. We can estimate each of these vectors separately, by restricting the sample to $S_{t-1}=1$ and $S_{t-1}=0$, respectively. For instance, $\hat{b}_{h}(1)$ can be obtained from a regression of y_{t+h} on $x_{t} S_{t-1}$ and $W_{t-1} S_{t-1}$ (omitting $x_{t}\left(1-S_{t-1}\right)$ and $W_{t-1}\left(1-S_{t-1}\right)$ in the regression). This follows because $S_{t-1}\left(1-S_{t-1}\right)=0$ for all t. Similarly, we can obtain $\hat{b}_{h}(0)$ from a regression of y_{t+h} on $x_{t}\left(1-S_{t-1}\right)$ and $W_{t-1}\left(1-S_{t-1}\right)$ (omitting $x_{t} S_{t-1}$ and $W_{t-1} S_{t-1}$ in this regression).

Our next result generalizes Proposition 3.2. to the multivariate structural VAR model given in (7) and (8).

Proposition B. 2 Consider the structural process (7) and (8) with $S_{t}=\eta\left(q_{r}: r \leq t\right)$. If Assumptions B. 1 and B. 2 hold, then for $s \in\{0,1\}$,

$$
b_{h}(s) \equiv p \lim _{T \rightarrow \infty} \hat{b}_{h}(s)=C M R_{h}(s)=C A R_{h}(1, s)
$$

where $\operatorname{CAR}_{h}(1, s)$ is the conditional average response function in Definition 1 with $\delta=1$.

B. 4 Proofs of Propositions B. 1 and B. 2

Proof of Proposition B.1. The proof for $h=0$ and $h=1$ is in the text. We omit the proof for general h since it follows from similar arguments.
Proof of Proposition B.2. We focus on $s=1$. To define $\hat{b}_{h}(1)$, let

$$
\underset{T \times k}{Y}=\left(\begin{array}{c}
y_{1+h}^{\prime} \\
\vdots \\
y_{T+h}^{\prime}
\end{array}\right), \quad \underset{T \times 1}{X_{1}}=\left(\begin{array}{c}
x_{1} S_{0} \\
\vdots \\
x_{T} S_{T-1}
\end{array}\right), \quad \text { and } \underset{T \times(n p+1)}{X_{2}}=\left(\begin{array}{c}
W_{0}^{\prime} S_{0} \\
\vdots \\
W_{T-1}^{\prime} S_{T-1}
\end{array}\right)
$$

and define $M_{2}=I_{T}-X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}^{\prime}$.
By the Frisch-Waugh-Lovell (FWL) Theorem, $\hat{b}_{h}(1)^{\prime}=\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} Y$, or

$$
\hat{b}_{h}(1)=T^{-1}\left(Y^{\prime} M_{2} X_{1}\right)\left(T^{-1} X_{1}^{\prime} M_{2} X_{1}\right)^{-1} \equiv \hat{Q}_{1 y .2, h} \hat{Q}_{11.2}^{-1} .
$$

A similar expression holds for $\hat{b}_{h}(0)$ with the difference that the regressors x_{t} and W_{t-1} are interacted with $1-S_{t-1}$ rather than S_{t-1}.

Our goal is to derive the probability limit of $\hat{b}_{h}(1)$ (and $\left.\hat{b}_{h}(0)\right)$ as $T \rightarrow \infty$. We can write

$$
\begin{aligned}
\hat{Q}_{11.2} & =T^{-1} X_{1}^{\prime} X_{1}-T^{-1} X_{1}^{\prime} X_{2}\left(T^{-1} X_{2}^{\prime} X_{2}\right)^{-1} T^{-1} X_{2}^{\prime} X_{1}, \text { and } \\
\hat{Q}_{1 y .2, h} & =T^{-1} Y^{\prime} X_{1}-T^{-1} Y^{\prime} X_{2}\left(T^{-1} X_{2}^{\prime} X_{2}\right)^{-1} T^{-1} X_{2}^{\prime} X_{1} .
\end{aligned}
$$

If a law of large numbers applies to each term ${ }^{1}$,

$$
\begin{aligned}
\hat{Q}_{11.2} \xrightarrow{p} Q_{11.2} & \equiv E\left(x_{t}^{2} S_{t-1}\right)-E\left(x_{t} S_{t-1} W_{t-1}^{\prime}\right)\left[E\left(W_{t-1} W_{t-1}^{\prime} S_{t-1}\right)\right]^{-1} E\left(W_{t-1} S_{t-1} x_{t}\right), \text { and } \\
\hat{Q}_{1 y .2, h} \xrightarrow{p} Q_{1 y \cdot 2, h} & \equiv E\left(y_{t+h} x_{t} S_{t-1}\right)-E\left(y_{t+h} S_{t-1} W_{t-1}^{\prime}\right)\left[E\left(W_{t-1} W_{t-1}^{\prime} S_{t-1}\right)\right]^{-1} E\left(W_{t-1} S_{t-1} x_{t}\right) .
\end{aligned}
$$

We distinguish two cases: (i) $x_{t}=\varepsilon_{1 t}$, and (ii) $x_{t}=\mu_{1, t-1}+B_{11, t-1}(L) x_{t-1}+B_{12, t-1}(L) y_{t-1}+\varepsilon_{1 t}=$ $\alpha_{t-1}^{\prime} W_{t-1}+\varepsilon_{1 t}$ (where α_{t-1} is a state-dependent vector that collects the coefficients of $\mu_{1, t-1}, B_{11, t-1}(L)$ and $\left.B_{12, t-1}(L)\right)$.

In case (i), it is easy to see that $E\left(x_{t} S_{t-1} W_{t-1}^{\prime}\right)=0$ under the assumption that $x_{t}=\varepsilon_{1 t}$ is i.i.d.

[^1]and independent of $\varepsilon_{2 t}$. Thus,
$$
Q_{11.2}=E\left(x_{t}^{2} S_{t-1}\right) \text { and } Q_{1 y .2, h}=E\left(y_{t+h} x_{t} S_{t-1}\right),
$$
implying that ${ }^{2}$
$$
\hat{b}_{h}(1) \xrightarrow{p} b_{h}(1) \equiv E\left(y_{t+h} x_{t} S_{t-1}\right)\left[E\left(x_{t}^{2} S_{t-1}\right)\right]^{-1}=E\left(y_{t+h} x_{t} \mid S_{t-1}=1\right)\left[E\left(x_{t}^{2} \mid S_{t-1}=1\right)\right]^{-1}
$$

In case (ii), we can show that

$$
\begin{aligned}
Q_{11.2} & =E\left(\varepsilon_{1 t}^{2} S_{t-1}\right)=\operatorname{Pr}\left(S_{t-1}=1\right) E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=1\right) \text { and } \\
Q_{1 y .2, h} & =E\left(y_{t+h} \varepsilon_{1 t} S_{t-1}\right)=\operatorname{Pr}\left(S_{t-1}=1\right) E\left(y_{t+h} \varepsilon_{1 t} \mid S_{t-1}=1\right),
\end{aligned}
$$

implying that $\hat{b}_{h}(1)=E\left(y_{t+h} \varepsilon_{1 t} \mid S_{t-1}=1\right)\left[E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=1\right)\right]^{-1}$. Heuristically, this follows because by the FWL theorem, and conditioning on $S_{t-1}=1$, the slope coefficient associated with x_{t} from regressing y_{t+h} on x_{t} and W_{t-1} can be obtained in two steps. First, we regress x_{t} on W_{t-1} (interacted with S_{t-1}) and obtain the residual. Under our identification condition, this is $\varepsilon_{1 t}$. Then, we regress y_{t+h} on $\varepsilon_{1 t}$ (interacted with S_{t-1}). More specifically, note that

$$
E\left(x_{t} S_{t-1} W_{t-1}^{\prime}\right)=E\left(\alpha_{t-1}^{\prime} W_{t-1} W_{t-1}^{\prime} S_{t-1}\right)+E\left(\varepsilon_{1 t} S_{t-1} W_{t-1}^{\prime}\right)=E\left(\alpha_{t-1}^{\prime} W_{t-1} W_{t-1}^{\prime} S_{t-1}\right),
$$

since $E\left(\varepsilon_{1 t} S_{t-1} W_{t-1}^{\prime}\right)=0$ by Assumption B.1. It follows that

$$
E\left(x_{t} S_{t-1} W_{t-1}^{\prime}\right)=\alpha_{E}^{\prime} E\left(W_{t-1} W_{t-1}^{\prime} \mid S_{t-1}=1\right) \operatorname{Pr}\left(S_{t-1}=1\right) .
$$

Hence, the term $E\left(x_{t} S_{t-1} W_{t-1}^{\prime}\right)\left[E\left(W_{t-1} W_{t-1}^{\prime} S_{t-1}\right)\right]^{-1} E\left(W_{t-1} S_{t-1} x_{t}\right)$ equals

$$
\begin{aligned}
& \alpha_{E}^{\prime} E\left(W_{t-1} W_{t-1}^{\prime} \mid S_{t-1}=1\right)\left[E\left(W_{t-1} W_{t-1}^{\prime} \mid S_{t-1}=1\right)\right]^{-1} E\left(W_{t-1} W_{t-1}^{\prime} \mid S_{t-1}=1\right) \alpha_{E} \operatorname{Pr}\left(S_{t-1}=1\right) \\
= & \alpha_{E}^{\prime} E\left(W_{t-1} W_{t-1}^{\prime} \mid S_{t-1}=1\right) \alpha_{E} \operatorname{Pr}\left(S_{t-1}=1\right) \\
= & E\left(\alpha_{t-1}^{\prime} W_{t-1} W_{t-1}^{\prime} \alpha_{t-1} \mid S_{t-1}=1\right) \operatorname{Pr}\left(S_{t-1}=1\right) .
\end{aligned}
$$

Since $x_{t}^{2}=\left(\alpha_{t-1}^{\prime} W_{t-1}+\varepsilon_{1 t}\right)^{2}=\alpha_{t-1}^{\prime} W_{t-1} W_{t-1}^{\prime} \alpha_{t-1}+2 \alpha_{t-1}^{\prime} W_{t-1} \varepsilon_{1 t}+\varepsilon_{1 t}^{2}$, where the second term has a conditional mean of zero, it follows that

$$
Q_{11.2}=\operatorname{Pr}\left(S_{t-1}=1\right) E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=1\right) .
$$

[^2]One can use similar arguments to show that

$$
Q_{1 y .2, h}=\operatorname{Pr}\left(S_{t-1}=1\right) E\left(y_{t+h} \varepsilon_{1 t} \mid S_{t-1}=1\right)
$$

Thus, both in cases (i) and (ii), we conclude that

$$
\hat{b}_{h}(1) \xrightarrow{p} b_{h}(1)=E\left(y_{t+h} \varepsilon_{1 t} \mid S_{t-1}=1\right)\left[E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=1\right)\right]^{-1} \equiv \mathcal{N}_{h} \mathcal{D}
$$

where \mathcal{N}_{h} stands for numerator and \mathcal{D} is the denominator. Next, we express \mathcal{N}_{h} and \mathcal{D} in terms of the model parameters. To evaluate \mathcal{N}_{h}, we use the fact that for any $h, y_{t+h}=\mathbb{S}_{k} Z_{t+h}$, where Z_{t+h} is obtained from the companion-form representation of the model given by (10).

Consider first $h=0$. Then

$$
Z_{t}=a_{t-1}+A_{t-1} Z_{t-1}+\xi_{t}
$$

where

$$
\xi_{t}=\binom{\eta_{t}}{0}=\binom{C_{t-1}^{-1} e_{1, n} \varepsilon_{1 t}+C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t}}{0}=\left(e_{1, p} \otimes C_{t-1}^{-1} e_{1, n}\right) \varepsilon_{1 t}+e_{1, p} \otimes C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t}
$$

given that $\eta_{t}=C_{t-1}^{-1} \varepsilon_{t}$ and $\varepsilon_{t}=C_{t-1}^{-1} e_{1, n} \varepsilon_{1 t}+C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t}$, where $e_{1, n}$ and $I_{2: n}$ are as defined in Section B.2. Hence,

$$
\begin{equation*}
y_{t}=\mathbb{S}_{k} Z_{t}=\mathbb{S}_{k}\left(e_{1, p} \otimes C_{t-1}^{-1} e_{1, n}\right) \varepsilon_{1 t}+\mathbb{S}_{k}\left(a_{t-1}+A_{t-1} Z_{t-1}\right)+\mathbb{S}_{k}\left(e_{1, p} \otimes C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t}\right) \tag{14}
\end{equation*}
$$

Using this decomposition of y_{t}, we can write $\mathcal{N}_{0}=E\left(y_{t} \varepsilon_{1 t} \mid S_{t-1}=1\right)=\mathcal{N}_{0,1}+\mathcal{N}_{0,2}+\mathcal{N}_{0,3}$, where

$$
\begin{aligned}
\mathcal{N}_{0,1} & =E\left[\mathbb{S}_{k}\left(e_{1, p} \otimes C_{t-1}^{-1} e_{1, n}\right) \varepsilon_{1 t}^{2} \mid S_{t-1}=1\right] \\
\mathcal{N}_{0,2} & =E\left[\mathbb{S}_{k}\left(a_{t-1}+A_{t-1} Z_{t-1}\right) \varepsilon_{1 t} \mid S_{t-1}=1\right], \text { and } \\
\mathcal{N}_{0,3} & =E\left[\mathbb{S}_{k}\left(e_{1, p} \otimes C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t}\right) \varepsilon_{1 t} \mid S_{t-1}=1\right]
\end{aligned}
$$

Under Assumption B. 1 and applying repeatedly the law of iterated expectations (LIE), it can be shown that $\mathcal{N}_{0,2}=\mathcal{N}_{0,3}=0$, implying that $\mathcal{N}_{0} \equiv E\left(y_{t} \varepsilon_{1 t} \mid S_{t-1}=1\right)=\mathcal{N}_{0,1}$. Thus,

$$
\mathcal{N}_{0}=\mathbb{S}_{k}\left(e_{1, p} \otimes C_{E}^{-1} e_{1, n}\right) E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=1\right)
$$

Since $b_{h}(1) \equiv \mathcal{N}_{0} \mathcal{D}$, for $h=0$, where $\mathcal{D} \equiv\left[E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=1\right)\right]^{-1}$, this implies the result. A similar argument shows that

$$
\hat{b}_{h}(0) \xrightarrow{p} b_{h}(0)=\mathbb{S}_{k}\left(e_{1, p} \otimes C_{R}^{-1} e_{1, n}\right) \text { for } h=0
$$

Next, we consider $h=1$. Now,

$$
\hat{b}_{h}(1) \xrightarrow{p} b_{h}(1) \equiv E\left(y_{t+1} \varepsilon_{1 t} \mid S_{t-1}=1\right)\left[E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=1\right)\right]^{-1} \equiv \mathcal{N}_{1} \mathcal{D} \text { when } h=1 .
$$

To obtain \mathcal{N}_{1}, we can use the fact that

$$
\begin{align*}
y_{t+1} & =\mathbb{S}_{k} Z_{t+1}=\mathbb{S}_{k}\left(a_{t}+A_{t} Z_{t}+\xi_{t+1}\right) \\
& =\mathbb{S}_{k}\left(a_{t}+A_{t}\left(a_{t-1}+A_{t-1} Z_{t-1}+\xi_{t}\right)+\xi_{t+1}\right) \\
& =\mathbb{S}_{k} A_{t} \xi_{t}+\mathbb{S}_{k}\left(a_{t}+A_{t}\left(a_{t-1}+A_{t-1} Z_{t-1}\right)\right)+\mathbb{S}_{k} \xi_{t+1} \tag{15}
\end{align*}
$$

where $\xi_{s}=\left(e_{1, p} \otimes C_{s-1}^{-1} e_{1, n}\right) \varepsilon_{1 s}+e_{1, p} \otimes C_{s-1}^{-1} I_{2: n} \varepsilon_{2 s}$ for $s=t, t+1$. This implies that $\mathcal{N}_{1} \equiv$ $E\left(y_{t+1} \varepsilon_{1 t} \mid S_{t-1}=1\right)=\mathcal{N}_{1,1}+\mathcal{N}_{1,2}+\mathcal{N}_{1,3}$, where

$$
\begin{aligned}
\mathcal{N}_{1,1} & =E\left(\mathbb{S}_{k} A_{t} \xi_{t} \varepsilon_{1 t} \mid S_{t-1}=1\right) \\
\mathcal{N}_{1,2} & =E\left[\mathbb{S}_{k}\left(a_{t}+A_{t}\left(a_{t-1}+A_{t-1} Z_{t-1}\right)\right) \varepsilon_{1 t} \mid S_{t-1}=1\right], \text { and } \\
\mathcal{N}_{1,3} & =E\left[\mathbb{S}_{k} \xi_{t+1} \varepsilon_{1 t} \mid S_{t-1}=1\right] .
\end{aligned}
$$

Given the definition of ξ_{t+1}, we can easily see that $\mathcal{N}_{1,3}=0$ by Assumption B.1, since it implies that $E\left(\xi_{t+1} \mid \mathcal{F}^{t}\right)=0$. To conclude that $\mathcal{N}_{1,2}=0$, we use the exogeneity condition on S_{t}, i.e. the fact that $S_{t}=\eta\left(q_{s}: s \leq t\right)$ with q_{s} satisfying Assumption B.2. Under these assumptions, S_{t} and $\varepsilon_{1 t}$ are mutually independent, implying that by the LIE, we can write

$$
\mathcal{N}_{1,2}=E\left[\mathbb{S}_{k}\left(a_{t}+A_{t}\left(a_{t-1}+A_{t-1} Z_{t-1}\right)\right) E\left(\varepsilon_{1 t} \mid \mathcal{F}^{t-1}, S_{t}\right) \mid S_{t-1}=1\right]
$$

where $\mathcal{F}^{t-1}=\sigma\left(z_{t-1}, S_{t-1}, z_{t-2}, S_{t-2}, \ldots\right)$. Since $E\left(\varepsilon_{1 t} \mid \mathcal{F}^{t-1}, S_{t}\right)=E\left(\varepsilon_{1 t}\right)=0$, we obtain that $\mathcal{N}_{1,2}=0$. Hence, $\mathcal{N}_{1}=\mathcal{N}_{1,1}$. The result follows because we can show that

$$
\mathcal{N}_{1,1}=E\left[\mathbb{S}_{k} A_{t}\left(e_{1, p} \otimes C_{t-1}^{-1} e_{1, n}\right) \varepsilon_{1 t}^{2} \mid S_{t-1}=1\right],
$$

under Assumption B. 1 and B.2. More specifically, using the definition of $\xi_{t}, \mathcal{N}_{1,1}$ can be decomposed as follows:

$$
\mathcal{N}_{1,1}=E\left[\mathbb{S}_{k} A_{t}\left(e_{1, p} \otimes C_{t-1}^{-1} e_{1, n}\right) \varepsilon_{1 t}^{2} \mid S_{t-1}=1\right]+E\left[\mathbb{S}_{k} A_{t}\left(e_{1, p} \otimes C_{t-1}^{-1} I_{2: n} \varepsilon_{2 t} \varepsilon_{1 t}\right) \mid S_{t-1}=1\right],
$$

where $E\left(\varepsilon_{1 t} \varepsilon_{2 t} \mid S_{t}, \mathcal{F}^{t-1}\right)=E\left(\varepsilon_{1 t} \varepsilon_{2 t}\right)=0$ under our assumptions. This implies that

$$
b_{h}(1)=\frac{E\left[\mathbb{S}_{k} A_{t}\left(e_{1, p} \otimes C_{t-1}^{-1} e_{1, n}\right) \varepsilon_{1 t}^{2} \mid S_{t-1}=1\right]}{E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=1\right)} .
$$

The result follows because the numerator simplifies to $E\left[\mathbb{S}_{k} A_{t}\left(e_{1, p} \otimes C_{t-1}^{-1} e_{1, n}\right) \mid S_{t-1}=1\right]\left[E\left(\varepsilon_{1 t}^{2} \mid S_{t-1}=1\right)\right]$
under the assumption that $\varepsilon_{1 t}$ is i.i.d. $\left(0, \sigma_{1}^{2}\right)$. A similar result holds for $b_{h}(0)$ when $h=1$. The proof for other values of h follows from similar arguments.

C Challenges to generalizing our results to richer models of state dependence

Our formal results in Section 3.2 restrict attention to models in which S_{t} depends only on $\varepsilon_{1 t}$. If the LP method does not work for this simple model, there is no reason why it should work for more complicated models. However, formally generalizing our analysis to models with states depending on y_{t} (or, more generally, on past information on the outcome variables z_{t}) is not straightforward. This problem is analogous to that of obtaining the best forecast of a SETAR model, for which analytical solutions are not available. The best forecast at time t is $E\left(y_{t+h} \mid \mathcal{F}^{t}\right)$, the conditional mean of y_{t+h} given information available at t, where $\mathcal{F}^{t}=\sigma\left(y_{t}, y_{t-1}, \ldots\right)$. An analytical expression for this conditional expectation is not available even under Gaussianity. At best, we can obtain an approximation (see De Gooijer and De Bruin (1998)). In our case, the problem is even more difficult because the impulse response functions we consider condition only on S_{t-1}, making it necessary to integrate out the other information.

A different strategy would have been to follow Angrist and Pischke (2009, Chapter 3, p. 78 and p. 110) in obtaining the probability limit of the LP estimator by replacing Assumption 3 with suitable high-level assumptions on the conditional mean function $g_{h}(e, s) \equiv E\left(y_{t+h} \mid \varepsilon_{1 t}=e, S_{t-1}=s\right)$ and on the distribution of $\varepsilon_{1 t}$. It can be shown that in this case the state-dependent LP estimator is a weighted average of $g_{h}^{\prime}(e, s) \equiv \partial g_{h}(e, s) / \partial e$, provided this derivative exists. The literature that interprets the OLS estimator as a weighted average of the slope coefficients typically assumes the differentiability of the conditional mean function (or of the potential outcomes) and bounded support for the error term (see e.g. Graham and Pinto (2022) and Rambachan and Shephard (2021)). The challenge is that these high-level assumptions may not hold for the models used in applied work. In practice, the conditional mean function may not be differentiable if it involves indicator functions, or its limit may not be defined, calling into question these assumptions. Moreover, even when differentiability is not a concern, the weighted average derivative recovered by the state-dependent LP estimator will differ from both the CAR and the CMR if the support of the error term is bounded. This is the case, for example, for the processes we examined in Sections 3.1 and 3.2, suggesting that this alternative method of proof is less general than it may have seemed at first sight. While it may be possible to come up with alternative conditions under which the state-dependent LP estimator recovers the weighted average derivative, it is not clear what those conditions might be, nor can it be taken for granted that
the implied weighted average derivative would correspond to conventional measures of the CAR and the CMR, which is why we do not pursue this question in the current paper.

D Parameters for the data generating process in Section 5

The data generating process in Section 5 uses the following parameter values obtained by fitting the model to the quarterly data used in Ramey and Zubairy (2018), assuming that a recession corresponds to periods when unemployment is above the historical mean:

$$
\begin{aligned}
& C_{E}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-0.0097 & 1 & 0 \\
0.0056 & 0.0371 & 1
\end{array}\right], C_{R}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-0.0495 & 1 & 0 \\
-0.0510 & -0.2134 & 1
\end{array}\right], k_{E}=\left[\begin{array}{c}
0 \\
0.0034 \\
0.0177
\end{array}\right], k_{R}=\left[\begin{array}{c}
0 \\
0.0145 \\
0.1007
\end{array}\right], \\
& A_{E, 1}=C_{E}^{-1} B_{E, 1}=\left[\begin{array}{ccc}
-0.1741 & 0 & 0 \\
0.0317 & 0.8185 & -0.0437 \\
-0.0586 & 0.7540 & 1.4140
\end{array}\right], A_{E, 2}=\left[\begin{array}{cc}
0.4266 & 0 \\
0.1107 & -0.0105 \\
0.0296 & -0.7467 \\
-0.4706
\end{array}\right], \\
& A_{E, 3}=\left[\begin{array}{ccc}
0.4065 & 0 & 0 \\
0.0889 & 0.2965 & -0.1358 \\
0.0168 & -0.3586 & 0.0918
\end{array}\right], A_{E, 4}=\left[\begin{array}{cc}
0.3633 & 0 \\
0.0774 & -0.1165 \\
0.0595 \\
0.0535 & 0.3428 \\
-0.0505
\end{array}\right], \\
& A_{R, 1}=\left[\begin{array}{ccc}
0.2952 & 0 & 0 \\
0.0088 & 1.6449 & 0.1237 \\
0.0098 & 0.0450 & 1.4823
\end{array}\right], A_{R, 2}=\left[\begin{array}{cc}
-0.0854 & 0 \\
0.0463 & -0.8551 \\
-0.1995 \\
-0.0051 & -0.0752 \\
-0.7047
\end{array}\right], \\
& A_{R, 3}=\left[\begin{array}{ccc}
0.1670 & 0 & 0 \\
0.0107 & 0.2722 & 0.0245 \\
-0.0154 & 0.0911 & 0.2347
\end{array}\right], A_{R, 4}=\left[\begin{array}{ccc}
-0.0331 & 0 & 0 \\
-0.0019 & -0.0869 & 0.0410 \\
0.0476 & -0.0333 & -0.1174
\end{array}\right] .
\end{aligned}
$$

E Additional simulation results

This appendix contains additional simulation results. Figures D. 1 and D. 2 report simulation results when $\gamma_{E}=0.9, \gamma_{R}=-0.1$ in DGP 1 and DGP 2. Figures D. 3 and D. 4 report the cumulative government spending multiplier for $\delta \in\{-1,-5,-10\}$.

Figure D.1: Asymptotic bias of LP response when $S_{t}=1\left(y_{t}>0\right)$

Figure D.2: LP response and decomposition of $C A R$ when $S_{t}=1\left(y_{t}>0\right)$ and $\delta=5$

Figure D.3: Cumulative spending multiplier when $S_{t}=1\left(y_{t}>1\right)$

Figure D.4: Cumulative spending multiplier when $S_{t}=1\left(y_{t}>M A(12)\right)$

References

[1] Alloza, M., Gonzalo, J., Sanz, C., 2021. Dynamic effects of persistent shocks. Manuscript, Banco de España.
[2] Blanchard, O., Perotti, R., 2002. An empirical characterization of the dynamic effects of changes in government spending and taxes on output. Quarterly Journal of Economics, 117(4): 1329-1368. https://doi.org/10.1162/003355302320935043
[3] Kole, E., van Dijk, D., 2021. Moments, shocks and spillovers in Markov switching VAR models, Manuscript, Erasmus School of Economics.

[^0]: *Acknowledgments: This work was supported by an NSERC grant from the government of Canada and a URC grant from Emory University. The views expressed in the paper are those of the authors and do not necessarily represent the views of the Federal Reserve Bank of Dallas or the Federal Reserve System. An earlier version of this paper circulated under the title "When do state-dependent local projections work?".
 ${ }^{\dagger}$ McGill University, Department of Economics, 855 Sherbrooke St. W., Montréal, Québec, H3A 2T7, Canada. E-mail: silvia.goncalves@mcgill.ca.
 ${ }^{\ddagger}$ University of Kentucky, Department of Economics, 550 South Limestone, Lexington, KY 40506-0034, USA. E-mail: amherrera@uky.edu.
 ${ }^{\S}$ Federal Reserve Bank of Dallas, Research Department, 2200 N. Pearl St., Dallas, TX 75201, USA. E-mail: lkilian2019@gmail.com.
 ${ }^{I}$ Emory University, Economics Department, 1602 Fishburne Dr. Atlanta, GA 30322, USA. E-mail: epesave@emory.edu.

[^1]: ${ }^{1}$ This follows under the assumption that z_{t} is strictly stationary and ergodic and that the usual moment and rank conditions on the regressors are satisfied. We leave these as implicit high level assumptions since our focus here is on the conditions that S_{t} needs to satisfy in order for the LP estimator to be consistent. Kole and van Dijk (2021) (and references therein) provide primitive conditions for stationarity and ergodicity of a Markov Switching SVAR model when the states S_{t} are assumed to be a first-order exogenous Markov process. Deriving analogous primitive conditions for our setting, when the process for the exogenous S_{t} is not specified, is beyond the scope of this paper.

[^2]: ${ }^{2}$ This result is consistent with the fact that when x_{t} is a directly observed shock we can simply regress y_{t+h} onto $x_{t} S_{t-1}$ to obtain a consistent estimator of $b_{E, h}$. When $x_{t}=\varepsilon_{1 t}$, adding the controls $W_{t-1} S_{t-1}$ is not required for consistency, but can be important for efficiency.

