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Abstract

We consider bootstrap inference for estimators which are (asymptotically) biased. We

show that, even when the bias term cannot be consistently estimated, valid inference can

be obtained by proper implementations of the bootstrap. Specifically, we show that the

prepivoting approach of Beran (1987, 1988), originally proposed to deliver higher-order re-

finements, restores bootstrap validity by transforming the original bootstrap p-value into

an asymptotically uniform random variable. We propose two different implementations of

prepivoting (plug-in and double bootstrap), and provide general high-level conditions that

imply validity of bootstrap inference. To illustrate the practical relevance and implementa-

tion of our results, we discuss five applications: (i) a simple location model for i.i.d. data,

possibly with infinite variance; (ii) regression models with omitted controls; (iii) inference

on a target parameter based on model averaging; (iv) ridge-type regularized estimators; and

(v) dynamic panel data models.

Keywords: Asymptotic bias, bootstrap, incidental parameter bias, model averaging, prepiv-

oting, regularization.

1 Introduction

Consider an estimator θ̂n of a population parameter θ, which is the object of inference.

Classic (first-order) asymptotic inference on θ is based on large-sample results of the form

Tn := g(n)(θ̂n − θ)
d→ ξ1,

where g(n) → ∞ and, in the standard case of asymptotically Gaussian estimators, g(n) = n1/2

and ξ1 ∼ N(0, σ2). However, it is frequently the case that θ̂n, rather than being centered around
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θ as n grows, is asymptotically biased. Specifically, it may hold that

Tn := g(n)(θ̂n − θ)
d→ B + ξ1, (1.1)

where B is an unknown finite constant. Despite (1.1) implying that θ̂n is consistent for θ,

inference based on the quantiles of ξ1 is invalid, unless B = 0.

Cases of asymptotically biased estimators arise in all areas of econometrics and statistics.

For instance, they can appear in regression models with omitted controls (Li and Müller, 2021),

model averaging estimation (Liu, 2015), shrinkage and lasso-type estimators (Knight and Fu,

2001), incidental parameter problems (Hahn and Kuersteiner, 2002), nonparametric inference

(Calonico, Cattaneo, and Titiunik, 2014, Calonico, Cattaneo, and Farrell, 2018, Cattaneo and

Jansson, 2018), among others. In some cases B can be estimated, but that is not always the

case, and asymptotic inference based on θ̂n is generally infeasible.

The bootstrap, which is well known to deliver asymptotic refinements over first-order asymp-

totic approximations as well as bias corrections (see Hall, 1992, and Horowitz, 2001), cannot

in general be applied to solve the asymptotic bias problem in cases where a consistent estima-

tor of the asymptotic bias does not exist. Specifically, consider a bootstrap procedure generat-

ing a bootstrap analogue of θ̂n, say θ̂∗n, from an auxiliary bootstrap sample with bootstrap true

value θ̂n. Ideally, as in e.g. Cattaneo and Jansson (2018), the bootstrap analogue of Tn, say T ∗
n ,

should mimic the asymptotic distribution in (1.1); that is,

T ∗
n := g(n)(θ̂∗n − θ̂n)

d∗→p B + ξ1, (1.2)

where ‘
d∗→p’ denotes weak convergence in probability, meaning that P ∗(T ∗

n ≤ u) →p G(u − B),

with G(u) being the cumulative distribution funtion [cdf] of ξ1 and P ∗ the probability measure

induced by the bootstrap (i.e., conditional on the original data). However, the result in (1.2)

cannot usually be achieved. In particular, there are at least two main reasons for failure of the

bootstrap.

The first reason is when the asymptotic bias cannot be replicated in the bootstrap world.

In this case, the large sample distribution of T ∗
n converges (in probability) to the distribution

function of ξ1, rather than B+ξ1. Therefore, the bootstrap fails to mimic the bias. For example,

this happens when the bootstrap sample is based on m = o(n) observations, as for classic ‘m out

of n’ bootstrap schemes (Arcones and Giné, 1989) or subsampling algorithms (Politis, Romano,

and Wolf, 1999).

The second reason is when the asymptotic bias term in the bootstrap world includes a

random (additive) component, say ξ2. If this is the case, the bootstrap distribution is random

in the limit and hence cannot mimic the asymptotic distribution given in (1.1). Specifically,

rather than (1.2), it may hold that

P ∗(T ∗
n ≤ u) → G(u−B − ξ2) (weakly).

In general, this case occurs because in the bootstrap world, population parameters (which are

non-random in the original world) are replaced by bootstrap analogues which are random in the

bootstrap world, even in the limit. As a consequence, the limit bootstrap measure is random,

thus invalidating the bootstrap as a means for estimating the limit distribution (1.1).
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In both scenarios, the bootstrap does not mimic the asymptotic distribution of the original

statistic. In particular, in both cases the distribution of the bootstrap p-value is not asymptot-

ically uniform, and the bootstrap cannot deliver hypothesis tests (or confidence intervals) with

the desired null rejection probability (or coverage probability).

In this paper we show that, in this non-standard case where inference involves an asymp-

totically biased estimator that cannot be bias-corrected, valid inference can successfully be re-

stored by proper implementation of the bootstrap. This is done by focusing on the properties

of the bootstrap p-value, say p̂n, rather than on the bootstrap as a means of estimating lim-

iting distributions, which is infesible due to the asymptotic bias. In particular, we show that

such implementations lead to bootstrap inferences which are valid in the sense that they pro-

vide asymptotically uniformly distributed p-values.

Our inference strategy is based on the fact that, for some bootstrap schemes, the large-

sample distribution of the bootstrap p-value, say H(u), u ∈ [0, 1], although not uniform, does

not depend on B. That is, we can search for bootstrap algorithms which generate bootstrap p-

values that, in large samples, are not affected by unknown bias terms. When this is possible,

we can make use of the prepivoting approach of Beran (1987, 1988), which — as we will show in

this paper — allows to restore bootstrap validity by tranforming the original bootstrap p-value

using the unconditional distribution H. Specifically, provided p̂n has asymptotic cdf H, then

under mild conditions, H(p̂n) is uniformly distributed in large samples. Hence, the mapping

p̂n 7−→ H(p̂n) is the key transformation to solve our inference problem. Interestingly, while

Beran (1987, 1988) proposed this approach to obtain asymptotic refinements for the bootstrap,

as far as we are aware it has never been applied to asymptotically biased estimators before.

Although the asymptotic distribution of the bootstrap p-value, H, does not depend on B, it

can still be unknown, as it may depend (often in a non-trivial manner) on a (possibly infinite-

dimensional) vector of nuisance parameters, even in the limit. Therefore, we propose different

alternative approaches to estimating H.

First, we show that if a consistent estimator of the nuisance parameters exist, then H can be

estimated using a simple plug-in approach. That is, if H = Hγ , where γ is the vector of nuisance

parameters, and a consistent estimator γ̂n of γ is available, then the mapping p̂n 7−→ Hγ̂n(p̂n)

will deliver asymptotically uniform p-values.

Second, we show that if estimation of γ is difficult (e.g., γ does not have a closed form ex-

pression), estimation of H can be done by using a ‘double bootstrap’ scheme, where the under-

lying idea is that inference on functionals of the bootstrap data can be built up by bootstrap-

ping the bootstrap sample itself. The double bootstrap (Efron, 1983; Hall, 1986; Beran, 1987,

1988) has been employed in the statistics literature to improve the coverage of confidence sets

and of bias correction methods; see Chang and Hall (2015) and the references therein. Our

context is different: we show that the double bootstrap allows estimation of the (unknown and

non-uniform) distribution of the bootstrap p-value by resampling from the bootstrap data orig-

inated in the first level.

For both methods, we provide general high-level conditions that imply validity of the pro-

posed approach. Our conditions are not restricted to asymptotically Gaussian estimators and

statistics. For instance, common assumptions such as finite variance or stationarity are not re-
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quired. Moreover, our methods are not specific to a given bootstrap method; rather, they can

in principle be applied to any bootstrap scheme satisfying the proposed sufficient conditions for

asymptotic validity.

Our approach is related to recent work by Shao and Politis (2013) and Cavaliere and Georgiev

(2020). In particular, a common feature is that the distribution function of the bootstrap

statistic, conditional on the original data, is random in the limit. Cavaliere and Georgiev (2020)

emphasize that randomness of the limiting bootstrap measure does not prevent the bootstrap

from delivering an asymptotically uniform p-value (bootstrap ‘unconditional’ validity), and

provide results to assess such asymptotic uniformity. Our context is different, since the presence

of an asymptotic bias term renders the distribution of the bootstrap p-value non-uniform, even

asymptotically. In this respect, our work is related to Shao and Politis (2013), who show that

t-statistics based on subsampling or block bootstrap methods with ‘fixed-b’ bandwidth (Kiefer

and Vogelsang, 2005) may deliver non-uniformly distributed p-values which, however, can be

estimated.

To illustrate the the practical relevance of our results and to show how to implement them in

applied problems, we initially discuss the main ideas by focusing on inference based on a model

averaging estimator obtained as a weighted average of least squares estimates from two simple

regression models; see, e.g., Hansen (2007). We show that even in this simple setting, model

averaging induces a bias component when non-trivial weight is given to a misspecified model.

The bias component does not vanish asymptotically and it may even diverge. While standard

bootstrap implementations fail in this case, we show how our proposed bootstrap approach

leads to valid inference.

In Section 4 we consider five well-known problems involving estimators that feature an

asymptotic bias term.

First, we consider a simple location model without the assumption of finite variance. This

case is non-standard, as the limit theory is no longer Gaussian and estimators converge at an

unknown rate. We show that although classic bootstraps for infinite variance data fail, our

approach delivers valid inference.

Second, we consider a regression model with omitted controls, as discussed in, e.g., Li

and Müller (2021). We show that, although the omission of significant regressors induces an

asymptotic bias, our method – when applied to the biased estimator – delivers valid inferences.

Third, we revisit the model averaging example in a much more general setting. In the context

of Hjort and Claeskens (2003) and Liu (2015), who assume that the non-targeted parameters are

local-to-zero, we show that a simple bootstrap algorithm which uses the full model to generate

the data, allows for post-model averaging inference unaffected by the asymptotic bias. This

complements Hounyo and Lahiri (2021), who show that the bootstrap provides a consistent

estimator of the asymptotic variance.

Fourth, we consider estimation of a vector of regression parameters through regularization;

in particular, by using a ridge estimator. The ridge estimator can be asymptotically biased when

the regularization parameter does not offset the magnitude of the regression coefficients; see

Knight and Fu (2001). Standard bootstrap implementations are invalid in this case (Chatterjee

and Lahiri, 2010, 2011). Nevertheless, we show that despite the presence of bias, we can con-
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struct asymptotically valid (double) bootstrap tests of significance based on the ridge estimator.

Fifth, we consider inference based on panel data estimators subject to incidental parameter

bias. In the context of a general nonlinear panel data model, the cross sectional pairs bootstrap

(Dhaene and Jochmans, 2015) cannot replicate the bias and consequently is invalid. We show

that a prepivoting approach based on a plug-in estimator of the bias is valid (see also Higgins

and Jochmans, 2022).

Structure of the paper

The paper is organized as follows. In Section 2 we preview our main results using a simple

model averaging estimator. Section 3 contains our general results, which are specialized to the

case of asymptotically Gaussian statistics in Section 3.4. Section 4 contains the five applications

of our results and Section 5 concludes. All proofs are collected in the appendix.

Notation

Throughout this paper, the notation ∼ indicates equality in distribution. For instance, Z ∼
N(0, 1) means that Z is distributed as a standard normal random variable. We write ‘x := y’

and ‘y =: x’ to mean that x is defined by y. The standard Gaussian cdf is denoted by Φ; U[0,1]

is the uniform distribution on [0, 1], and I{·} is the indicator function. If F is a cdf, F−1 denotes

the right-continuous generalized inverse, i.e., F−1(u) := sup{v ∈ R : F (v) ≤ u}, u ∈ R. Unless

specified otherwise, all limits are for n → ∞. The space of càdlàg functions R → R (equipped

with its Skorokhod J1-topology; see Kallenberg, 1997, Appendix A2) is denoted by D(R). For

matrices a, b, c with n rows, we let Sab := a′b/n and Sab.c := Sab − SacS
−1
cc Scb, assuming that

Scc has full rank.

For a (single-level) bootstrap sequence, say Y ∗
n , we use Y

∗
n

p∗→p 0, or, equivalently, or Y
∗
n

p∗→ 0,

in probability, to mean that, for any ϵ > 0, P ∗(|Y ∗
n | > ϵ) →p 0, where P

∗ denotes the probability

measure conditionally on the original data Dn. An equivalent notation is Y ∗
n = op∗(1) (where

we omit the qualification “in probability” for brevity). We also write Y ∗
n = Op∗(1) to mean that

P ∗(|Y ∗
n | > M) →p 0 for some large enough M . Similarly, for a double bootstrap sequence, say

Y ∗∗
n , we write Y ∗∗

n = op∗∗(1) to mean that for all ϵ > 0, P ∗∗(|Y ∗∗
n | > ϵ)

p∗→p 0, where P ∗∗ is the

probability measure conditional on the first-level bootstrap data D∗
n and on Dn, and we write

Y ∗∗
n = Op∗∗(1) to mean that there exists M < ∞ such that P ∗∗(|Y ∗∗

n | > M)
p∗→p 0.

We use Y ∗
n

d∗→p ξ or, equivalently, Y ∗
n

d∗→ ξ, in probability, to mean that, for all continuity

points u ∈ R of the cdf of ξ, say G(u) := P (ξ ≤ u), it holds that P ∗(Y ∗
n ≤ u) − G(u) →p 0;

or, setting Xn(u) := P ∗(Y ∗
n ≤ u) − G(u) (a function of Dn), that Xn(u) →p 0. Similarly, for

a double bootstrap sequence Y ∗∗
n , we use Y ∗∗

n
d∗∗→p∗ ξ, in probability, to mean that X∗

n(u) :=

P ∗∗(Y ∗∗
n ≤ u)−G(u) satisfies X∗

n(u)
p∗→p 0 for all continuity points u of G.

2 Model averaging and preview of main results

To motivate our framework, consider the following simple, illustrative example. Suppose we

observe a sample Dn := {yt, xt, zt; t = 1, . . . , n} generated by the linear regression model

yt = θxt + δzt + εt, εt ∼ i.i.d.N (0, 1) , (2.1)
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where, for simplicity, we assume a Gaussian distribution with a known variance σ2 = 1. The

regressors are univariate, non-stochastic, and linearly independent for all n. The goal is inference

on θ, such as testing the one-sided null hypothesis H0 : θ = θ0 versus H1 : θ < θ0, using model

averaging.

The researcher estimates θ by averaging two estimators; θ̂long is the OLS estimator from the

regression of yt on (xt, zt)
′, and θ̂short is the OLS estimator from the regression of yt on xt, i.e.

omitting zt. That is,

θ̂n := ωθ̂long + (1− ω)θ̂short, (2.2)

where ω denotes a fixed combination weight. Specifically, θ̂long = S−1
xx.zSxy.z and θ̂short =

S−1
xx Sxy. The estimator θ̂n is biased unless ω = 1 or δ = 0. Consider now the test statistic

Tn :=
√
n(θ̂n − θ0) = ω

√
n(θ̂long − θ0) + (1− ω)

√
n(θ̂short − θ0).

The researcher wishes to conduct inference on θ using the statistic Tn.

Since θ̂long = θ0 + S−1
xx.zSxε.z and θ̂short = θ0 + S−1

xx Sxzδ + S−1
xx Sxε, it holds that

Tn = (1− ω)S−1
xx Sxzn

1/2δ︸ ︷︷ ︸
=:Bn

+ (1− ω)S−1
xx Sxεn

1/2 + ωS−1
xx.zSxε.zn

1/2︸ ︷︷ ︸
∼N(0,v21,n)

∼ Bn + ξ1,n

with ξ1,n ∼ N(0, v21,n); v
2
1,n is derived in Appendix B.1. Equivalently, Tn − Bn ∼ ξ1,n. Hence,

because of the presence of Bn, inference based on quantiles of the N(0, v21,n) distribution is

invalid. Note that, under the local-to-zero assumption δ = cn−1/2, the term Bn is O(1), while

if δ is fixed Bn diverges. The results in this section hold under both scenarios.

The fact that the distribution of Tn is not centered at zero also complicates bootstrap

inference, as we now show. Consider a bootstrap sample D∗
n := {y∗t ; t = 1, . . . , n} generated

using estimates from the long model,

y∗t = θ̂longxt + δ̂longzt + ε∗t , ε∗t ∼ i.i.d.N (0, 1) .

Then, the bootstrap analogue of the model averaging estimator estimator (2.2) is given by

θ̂∗n := ωθ̂∗long + (1− ω)θ̂∗short,

with θ̂∗long and θ̂∗short denoting the OLS estimators of θ from the long and the short regressions

based on D∗
n, respectively. The bootstrap analogue of Tn is

T ∗
n :=

√
n(θ̂∗ − θ̂long) = ω

√
n(θ̂∗long − θ̂long) + (ω − 1)

√
n(θ̂∗short − θ̂long),

where θ̂long is the bootstrap true value since we generate D∗
n using θ̂long. It is straightforward

to see that, conditionally on Dn,

T ∗
n = (1− ω)S−1

xx Sxzn
1/2δ̂long︸ ︷︷ ︸

=:B̂n

+ (1− ω)S−1
xx Sxε∗n

1/2 + ωS−1
xx.zSxε∗.zn

1/2︸ ︷︷ ︸
∼N(0,v21,n)

∼ N(B̂n, v
2
1,n).

The presence of the (random) term B̂n implies that

T ∗
n |Dn ∼ N(B̂n, v

2
1,n)|B̂n,
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or, equivalently, (T ∗
n − B̂n)|Dn ∼ ξ1,n.

Consider a bootstrap test that rejects H0 at nominal level α whenever p̂n ≤ α, where p̂n is

the standard bootstrap p-value

p̂n := P ∗(T ∗
n ≤ Tn).

To control the asymptotic size of the test, a crucial condition is that p̂n converges in distribution

to U[0,1]. As it turns out, this condition is not satisfied in this context. The reason is that

B̂n −Bn is non-zero and, in general, does not vanish (unless ω = 1 or Sxz = 0), because

B̂n −Bn = (1− ω)S−1
xx Sxz(n

1/2(δ̂long − δ)) ∼ ξ2,n,

with ξ2,n ∼ N
(
0, v22,n

)
; v22,n is given in Appendix B.1. Hence,

p̂n = P ∗(T ∗
n ≤ Tn) = P ∗

(
T ∗
n − B̂n

v1,n
≤ Tn − B̂n

v1,n

)
= Φ

(
Tn − B̂n

v1,n

)
,

because T ∗
n − B̂n|Dn ∼ N(0, v21,n). Under our assumptions,

Tn − B̂n = (Tn −Bn)− (B̂n −Bn) ∼ ξ1,n − ξ2,n ∼ N
(
0, v2d,n

)
,

where v2d,n > 0 is given in Appendix B.1 and N
(
0, v2d,n

)
equals vd,nΦ

−1(U[0,1]) in distribution.

Hence, setting mn := vd,n/v1,n, we have that

p̂n = Φ

(
vd,nΦ

−1(U[0,1])

v1,n

)
∼ Φ(mnΦ

−1(U[0,1])) ̸= U[0,1], (2.3)

unless mn = 1. The failure of the standard bootstrap p-value p̂n is due to the fact that the bias

term Bn cannot be replicated by the bootstrap bias B̂n except when B̂n −Bn has a degenerate

distribution, which occurs only when ω = 1 (i.e., when θ̂n = θ̂long). Notice also that failure is

not a finite-sample problem: under standard conditions on the regressors, mn will not tend to

one as n → ∞.

Remark 2.1 It is shown in Appendix B.1 that mn = (1 − (1 − ω2)ρ̂2xz)
−1/2, where ρ̂xz =

Sxz(SxxSzz)
−1/2 is the sample correlation between x and z. Clearly, mn equals one if (i) ω =

1, i.e. all weight is assigned to the large model, or (ii) ρ̂xz = 0, i.e. the two regressors are

orthogonal.

Bootstrap failure in the model averaging context is not new; see Hjort and Claeskens (2003),

who pointed out the bootstrap invalidity when ω is random, and Section 4.3 below. As our ex-

ample illustrates, the bootstrap fails even when weights are fixed rather than random. However,

in our context, it is indeed possible to solve the bootstrap invalidity problem, as we explain next.

The idea is as follows. Because p̂n ∼ Φ(mnΦ
−1(U[0,1])), its distribution function is

Hn(u) := P (p̂n ≤ u) = P (Φ(mnΦ
−1(U[0,1])) ≤ u)

= P (U[0,1] ≤ Φ(m−1
n Φ−1(u))) = Φ(m−1

n Φ−1(u)),

implying that

Hn(p̂n) = Φ(m−1
n Φ−1(p̂n)) ∼ U[0,1].
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Thus, a test that rejects H0 whenever Hn(p̂n) ≤ α is exact. The mapping of p̂n into Hn(p̂n)

amounts to the prepivoting approach of Beran (1987), who introduced this idea as a way of

obtaining asymptotic refinements for the classic bootstrap. Our application of prepivoting is

new: we use it to transform an invalid bootstrap p-value into a valid modified bootstrap p-value.

Prepivoting in this example can be implemented analytically because we observe the finite-

sample distribution of p̂n. This follows from the Gaussianity assumption and the fact that the

only parameter that enters the distribution of the test statistic is mn, which is known in this

example. In more realistic applications, this is no longer the case, but we can approximate the

distribution of p̂n with a (double) bootstrap estimator or a ‘plug-in’ estimator of its limiting

distribution.

To explain the double bootstrap approach, suppose we do not know Hn(u) and therefore we

cannot compute Hn(p̂n) analytically. A bootstrap prepivoting approach consists of using the

bootstrap to obtain a bootstrap estimator of Hn(u), say Ĥn(u), and then using this approxi-

mation to compute Ĥn(p̂n). Given that Hn(u) = P (p̂n ≤ u), we can define the estimator

Ĥn(u) := P ∗(p̂∗n ≤ u),

where p̂∗n is the bootstrap analogue of p̂n. Since p̂n is itself a bootstrap p-value, computing p̂∗n

requires a double bootstrap, which can be implemented as follows. LetD∗∗
n := {y∗∗t ; t = 1, . . . , n}

and

y∗∗t = θ̂∗longxt + δ̂∗longzt + ε∗∗t , ε∗∗t ∼ i.i.d.N (0, 1) ,

where θ̂∗long and δ̂∗long are obtained from D∗
n (and not only Dn), as defined above. Importantly,

the ε∗∗t ’s are independent of both Dn and D∗
n. The ‘second-level’ bootstrap estimator of θ0 is

θ̂∗∗n := ωθ̂∗∗long + (1− ω)θ̂∗∗short,

where θ̂∗∗long and θ̂∗∗short are the OLS estimators of θ from the long and the short regressions based

on D∗∗
n , respectively. This implies that

T ∗∗
n :=

√
n(θ̂∗∗n − θ̂∗long) = ω

√
n(θ̂∗∗long − θ̂∗long) + (ω − 1)

√
n(θ̂∗∗short − θ̂∗long).

As for the standard bootstrap, it is straightforward to see that, conditionally on D∗
n and Dn,

T ∗∗
n = (1− ω)S−1

xx Sxzn
1/2δ̂∗long︸ ︷︷ ︸

=:B̂∗
n

+ (1− ω)S−1
xx Sxε∗∗n

1/2 + ωS−1
xx.zSxε∗∗.zn

1/2︸ ︷︷ ︸
∼N(0,v21,n)

∼ N(B̂∗
n, v

2
1,n).

Here, the presence of the random term B̂∗
n implies that the second-level bootstrap statistic is

conditionally biased,

T ∗∗
n |{D∗

n, Dn} ∼ N(B̂∗
n, v

2
1,n)|B̂∗

n,

or, equivalently,

T ∗∗
n − B̂∗

n|{D∗
n, Dn} ∼ ξ1,n.

Hence, and crucially, T ∗∗
n − B̂∗

n, T
∗
n − B̂n, and Tn −B all share the same distribution function,

given by the cdf of ξ1,n.

8



With this notation, the second-level bootstrap p-value is defined as

p̂∗n := P ∗∗(T ∗∗
n ≤ T ∗

n),

where P ∗∗ is the bootstrap probability measure induced by resampling from D∗
n (making p̂∗n a

function of D∗
n). We have that

p̂∗n = P ∗∗ (T ∗∗
n ≤ T ∗

n) = P ∗∗

(
T ∗∗
n − B̂∗

n

v1,n
≤ T ∗

n − B̂∗
n

v1,n

)
= Φ

(
T ∗
n − B̂∗

n

v1,n

)
(2.4)

because T ∗∗
n − B̂∗

n|{D∗
n, Dn} ∼ N

(
0, v21,n

)
. Using the fact that

T ∗
n − B̂∗

n = (T ∗
n − B̂n)− (B̂∗

n − B̂n) ∼ ξ1,n − ξ2,n ∼ N(0, v2d,n) ∼ vd,nΦ
−1(U[0,1]),

we have that

p̂∗n ∼ Φ(mnΦ
−1(U[0,1])),

where mn is as defined previously. Therefore

Ĥn(u) = P ∗(p̂∗n ≤ u) = P ∗(Φ(mnΦ
−1(U[0,1])) ≤ u) = Φ(m−1

n Φ−1(u)) = Hn(u).

This shows that the bootstrap distribution function of p̂∗n coincides with the distribution function

of p̂n. Thus, in this example, the double bootstrap modified p-value is exactly equal to the

analytically modified p-value:

p̃n := Ĥn(p̂n) = Φ(m−1
n Φ−1(p̂n)) = Hn(p̂n) ∼ U[0,1].

Remark 2.2 Notice that the results given in this section are exact and do not require n → ∞.

This follows from the assumption that the distribution of the errors is N(0, 1) and known. Should

this not be the case, then the arguments hold as n → ∞ under mild conditions; see Section 4.3.

Remark 2.3 The pairs bootstrap is another well-known alternative to the fixed regressor boot-

strap discussed above. It can be shown that the pairs bootstrap fails to estimate both the mean

and variance of the distribution of Tn, but nonetheless the double bootstrap and our methodol-

ogy deliver valid p-values in this setup as well. See Section 4.3 for details.

In Table 1 we present the results of a small Monte Carlo simulation experiment to ilustrate

the above results numerically. We generate the data from the regression model (2.1) with sample

sizes n = 10, 20, 40. The regressors are multivariate normally distributed with unit variances

and correlation 0.7, and the errors are either standard normal, t3, or χ
2
1 distributed. The true

values are θ = 1 and δ = 1 (although the results are invariant to the true values because

we use the unrestricted estimates to construct the bootstrap samples). The estimator is (2.2)

with ω = 1/2. We consider two bootstrap schemes. The first is the parametric bootstrap

scheme, where ε∗t ∼ i.i.d.N(0, 1), which is denoted as “par.” in the table. The second is the

non-parametric bootstrap scheme, where ε∗t is re-sampled independently from the centered

residuals {ε̂t − ε̂}t=1,...,n, which is denoted as “non-par.” Results are based on 10,000 Monte

Carlo simulations and B = 999 bootstrap replications.

The simulation outcomes in Table 1 clearly ilustrate our theoretical results. The standard

bootstrap p-value, p̂n, is much larger than the nominal level of the test. The plug-in modified
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Table 1: Simulated rejection frequencies (%) of bootstrap tests
5% nominal level 10% nominal level

par. non-par. par. non-par.
dist. n p̂n p̃n,p p̃n,d p̂n p̃n,p p̃n,d p̂n p̃n,p p̃n,d p̂n p̃n,p p̃n,d

N 10 10.1 5.6 5.2 15.2 10.8 5.8 15.9 10.7 10.0 20.2 15.5 10.2
20 10.3 5.1 5.1 12.0 7.2 4.8 16.1 10.7 10.6 17.7 12.3 9.9
40 9.9 5.0 5.0 10.5 5.8 4.9 15.6 10.1 10.1 15.9 11.0 9.6

t3 10 7.6 4.1 4.1 15.2 10.0 5.6 11.7 7.5 7.5 20.4 15.2 9.9
20 8.1 4.3 4.3 12.2 6.9 4.9 13.3 8.3 8.5 18.1 12.3 9.8
40 7.6 4.0 4.0 10.8 5.9 5.2 12.9 8.0 8.0 17.1 11.1 9.9

χ2
1 10 7.6 4.1 4.1 16.2 11.2 6.4 13.0 8.5 8.5 21.9 16.2 10.8

20 8.1 4.3 4.3 12.9 7.6 5.3 13.3 8.7 8.7 19.1 13.2 10.3
40 7.6 5.3 5.2 10.9 5.8 4.8 12.9 9.7 9.7 17.3 12.2 9.8

Notes: p̂n denotes the standard bootstrap; p̃n,p and p̃n,d denote the modified bootstrap using
the plug-in and the double bootstrap methods, respectively. The parametric bootstrap scheme,
where ε∗t ∼ i.i.d.N(0, 1), is denoted as “par.” and the non-parametric bootstrap scheme, where
ε∗t is re-sampled independently from the centered residuals {ε̂t − ε̂}t=1,...,n, is denoted as “non-
par.” The εt’s are i.i.d. draws from (standardized) N , t3, and χ2

1 distributions. Results are
based on 10,000 Monte Carlo simulations and B = 999.

p-value, p̃n,p, is close to the nominal level for the parametric bootstrap scheme, but is still over-

sized for the non-parametric scheme with the smaller sample sizes. Finally, the double bootstrap

modified p-value, p̃n,d, is nearly perfectly sized throughout the table.

3 General results

3.1 Framework and invalidity of the standard bootstrap

The general framework is as follows. We have a statistic Tn = T (Dn), defined as a general func-

tion of a sample Dn, for which we would like to compute a valid bootstrap p-value. Usually Tn

is a test statistic or a (possibly normalized) parameter estimator. Let D∗
n denote the bootstrap

sample, which depends on the original data and on some auxiliary bootstrap variates (which we

assume defined jointly with Dn on a possibly extended probability space). Let T ∗
n = T (D∗

n) be

a bootstrap analogue of Tn and let L̂n(u) := P ∗(T ∗
n ≤ u), u ∈ R, denote its distribution func-

tion, conditionally on the original data. The bootstrap p-value is defined as

p̂n := P ∗(T ∗
n ≤ Tn) = L̂n(Tn).

First-order asymptotic validity of p̂n requires that p̂n converges in distribution to a standard

uniform distribution, i.e. that p̂n →d U[0,1]. In this section we focus on a class of statistics Tn

and T ∗
n for which this condition is not necessarily satisfied. The main reason is the presence of

an additive ‘bias’ term Bn which contaminates the distribution of Tn and cannot be replicated

by the bootstrap distribution of T ∗
n .

Assumption 1 Tn −Bn →d ξ1, where Gγ(u) = P (ξ1 ≤ u) is a continuous cdf.
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When Bn converges to a nonzero constant B, Assumption 1 can be rewritten as

Tn
d→ B + ξ1,

where B represents a shift of the center of the distribution Gγ . If ξ1 is centered at zero and Tn

is a normalized version of a (scalar) parameter estimator, i.e. Tn = g(n)(θ̂n − θ), then we can

think of B as the asymptotic bias of θ̂n. Although we do not require ξ1 to have zero mean and

we allow for the possibility that Bn does not have a limit (and it may even diverge), we will

still refer to Bn as a ‘bias term’.

The example of Section 2 is such that Tn − Bn ∼ ξ1,n, where ξ1,n is Gaussian for any n.

More generally, in Assumption 1 we cover any statistic Tn that is not necessarily Gaussian (even

asymptotically) and whose limiting distribution is Gγ only after we subtract the sequence Bn.

We index the limiting distribution Gγ by a parameter γ to allow for the possibility that Tn−Bn

is not an asymptotic pivot.

Inference based on the asymptotic distribution of Tn requires estimating Bn and γ. Alter-

natively, we can use the bootstrap to bypass estimation of Bn and γ and directly compute a

bootstrap p-value that relies on T ∗
n and Tn alone, i.e. we consider p̂n := P ∗(T ∗

n ≤ Tn). A set

of high-level conditions on T ∗
n and Tn that allow us to derive the asymptotic properties of this

p-value are described next.

Assumption 2 (i) T ∗
n − B̂n

d∗→p ξ1, where ξ1 is described in Assumption 1; (ii)(
Tn −Bn

B̂n −Bn

)
d→

(
ξ1

ξ2

)
,

where ξ2 is such that Fϕ (u) = P (ξ1 − ξ2 ≤ u) is continuous.

Assumption 2(i) states that T ∗
n−B̂n converges in distribution to a random variable ξ1 having

the same distribution function Gγ as Tn − Bn.
1 Assumption 2(ii) complements Assumption 1

by requiring the joint convergence of Tn −Bn and B̂n −Bn towards ξ1 and ξ2, respectively. In

both cases, B̂n is a function of the original data, i.e. it is Dn-measurable.

Given Assumption 2(i), we could use the bootstrap distribution of T ∗
n − B̂n to approximate

the distribution of Tn − Bn. Since Bn is typically unknown, this result is not very useful

for inference unless B̂n is consistent for Bn. In the latter case, Assumption 2 together with

Assumption 1 imply that p̂n is asymptotically distributed as U[0,1]. This follows by noting that

if B̂n −Bn = op(1), then ξ2 = 0 a.s., implying that Fϕ(u) = Gγ(u). Consequently,

p̂n := P ∗(T ∗
n ≤ Tn) = P ∗(T ∗

n − B̂n ≤ Tn − B̂n)

= Gγ(Tn − B̂n) + op(1) (by Assumption 2(i))

d→ Gγ(ξ1 − ξ2) (by Assumption 2(ii) and continuity of Gγ)

∼ U[0,1],

1Note that we write T ∗
n − B̂n

d∗→p ξ1 to mean that T ∗
n − B̂n has (conditionally on Dn) the same asymptotic

distribution function as the random variable ξ1. We could alternatively write that T ∗
n −B̂n

d∗→p ξ∗1 and Tn−Bn
d→

ξ1 where ξ∗1 and ξ1 are two independent copies of the same distribution, i.e. P (ξ1 ≤ u) = P (ξ∗1 ≤ u). We do not
make this distinction because we care only about distributional results, but it should be kept in mind.

11



where the last distributional equality holds by Fϕ = Gγ and the probability integral transform.

However, this result does not hold if B̂n −Bn does not converge to zero in probability. Specifi-

cally, if B̂n −Bn →d ξ2 (jointly with Tn −Bn →d ξ1), then

Tn − B̂n = (Tn −Bn)− (B̂n −Bn)
d→ ξ1 − ξ2 ∼ F−1

ϕ (U[0,1])

under Assumptions 1 and 2(ii). When ξ2 is nondegenerate, Fϕ ̸= Gγ , implying that p̂n =

Gγ(Tn − B̂n) + op(1) is not asymptotically distributed as a standard uniform random variable.

This result is summarized in the following theorem, which generalizes the result given in (2.3)

for the example in Section 2.

Theorem 3.1 Suppose Assumptions 1 and 2 hold. Then p̂n →d Gγ(F
−1
ϕ (U[0,1])).

Remark 3.1 The value of B̂n in Assumption 2(i) depends on the chosen bootstrap algorithm.

For instance, it is possible that B̂n →p 0. Examples are given in Sections 4.1 and 4.5. If this is

the case, then Assumption 2(ii) is still satisfied; specifically, it holds with ξ2 = −B a.s., which

implies that

Fϕ(u) := P (ξ1 − ξ2 ≤ u) = P (ξ1 ≤ u−B) = Gγ(u−B),

and from Theorem 3.1 it follows that the bootstrap p-value satisfies

p̂n
d→ Gγ(G

−1
γ (U[0,1] −B)).

Notice that this distribution is not uniform unless B = 0. Hence, the p-value depends on B,

even in the limit.

Remark 3.2 Under Assumptions 1 and 2, standard bootstrap (percentile) confidence sets are

also in general invalid. Consider in particular the case where Tn = g(n)(θ̂n − θ) and T ∗
n is its

bootstrap analogue with (conditional) distribution function L̂n (u). Interest is in constructing a

right-sided confidence set for the unknown parameter θ. Using a standard percentile method, a

confidence set at the nominal confidence level 1− α ∈ (0, 1) obtained by test inversion is of the

form (see Horowitz, 2001, p. 3171)

CI1−α
n := [θ̂n − g(n)−1q̂n(1− α),+∞),

where q̂n(1− α) := L̂−1
n (1− α). Then,

P (θ ∈ CI1−α
n ) = P (θ̂n − g(n)−1q̂n(1− α) ≤ θ)

= P (Tn ≤ q̂n(1− α)) = P (L̂n(Tn) ≤ L̂n(q̂n(1− α)))

= P (p̂n ≤ L̂n(q̂n(1− α))) = P (p̂n ≤ 1− α) + o(1) ↛ 1− α

because by Theorem 3.1 p̂n is not asymptotically uniformly distributed.

Remark 3.3 It is worth noting that, under Assumptions 1 and 2, the bootstrap (conditional)

measure is random in the limit whenever ξ2 is non-degenerate. Specifically, assume for simplicity

that Bn →p B. Recall that L̂n(u) := P ∗(T ∗
n ≤ u), u ∈ R, and let Ĝγ,n(u) := P ∗(T ∗

n − B̂n ≤ u).

It then holds that

L̂n(u) = Ĝγ,n(u− B̂n) = Gγ(u−B − (B̂n −B)) + ân(u),
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where ân(u) ≤ supu∈R |Ĝγ,n(u) − Gγ(u)| = op(1) by Assumption 2(i), continuity of Gγ, and

Polya’s Theorem. Because B̂n −B →d ξ2, it follows that when ξ2 is non-degenerate, L̂n(u) →w

Gγ(u − B + ξ2), where →w denotes weak convergence of cdf ’s as (random) elements of D(R)
(see Cavaliere and Georgiev, 2020). The presence of ξ2 in Gγ(u−B+ ξ2) makes this a random

cdf.2 Therefore, the bootstrap is unable to mimic the asymptotic distribution of Tn, which is

Gγ(u−B) by Assumption 1.

Next, we describe two possible solutions to the invalidity of the standard bootstrap p-value

p̂n. One relies on the prepivoting approach of Beran (1987, 1988). The basic idea is that we

modify p̂n by applying an empirical monotone mapping p̃n = Hn (p̂n) which makes the modified

p-value p̃n asymptotically standard uniform. Contrary to Beran (1987, 1988), who proposed

this approach as a way of providing asymptotic refinements for the bootstrap, here we show how

to use this approach in order to solve the invalidity of the standard bootstrap p-value p̂n. This

result is new in the bootstrap literature. The second approach relies on computing a standard

bootstrap p-value based on the modified statistic given by Tn − B̂n. Thus, we modify the test

statistic rather than modifying the way we compute the bootstrap p-value.

3.2 Prepivoting

Let Hn(u) := P (p̂n ≤ u) denote the distribution function of the bootstrap p-value p̂n, where

u ∈ [0, 1]. Theorem 3.1 implies that

Hn(u) → P (Gγ(F
−1
ϕ (U[0,1])) ≤ u) = P (F−1

ϕ (U[0,1]) ≤ G−1
γ (u))

= P (U[0,1] ≤ Fϕ(G
−1
γ (u))) = Fϕ(G

−1
γ (u)) =: H(u),

uniformly over u ∈ [0, 1], given the continuity of Gγ and Fϕ. Although H is not the uniform

distribution, unless Gγ = Fϕ, the following corollary to Theorem 3.1 holds.

Corollary 3.1 Under the conditions of Theorem 3.1, Hn(p̂n) →d U[0,1].

Therefore, the mapping of p̂n into Hn(p̂n) transforms p̂n into a new p-value, Hn(p̂n), whose

asymptotic distribution is the standard uniform distribution on [0, 1]. Inference based onHn(p̂n)

is generally infeasible, because we do not observe Hn(u). However, if we can replace Hn(u)

with a uniformly consistent estimator Ĥn(u) then this approach will deliver a feasible modified

p-value p̃n := Ĥn(p̂n). Since the limit distribution of p̃n is the standard uniform distribution,

p̃n is an asymptotically valid p-value. The mapping of p̂n into p̃n = Ĥn(p̂n) by the estimated

distribution of the former corresponds to what Beran (1987) calls ‘prepivoting’. In the following

sections, we describe two methods of obtaining a consistent estimator of Hn(u).

Remark 3.4 The prepivoting approach can also be used to solve the invalidity of confidence

sets based on the standard bootstrap, see Remark 3.2. In particular, it suffices to replace the

nominal confidence level 1− α by Ĥ−1
n (1− α), i.e. to consider the set

C̃I
1−α

n := [θ̂n − g(n)−1q̂n(Ĥ
−1
n (1− α)),+∞).

2The same result follows in terms of weak convergence in distribution of T ∗
n |Dn. Specifically, because T ∗

n =

T ∗
n − B̂n + B̂n −Bn +Bn, where T ∗

n − B̂n
d∗→p ξ∗1 and (jointly) B̂n −Bn

d→ ξ2 with ξ∗1 ∼ ξ1 independent of ξ2, we
have that T ∗

n |Dn
w→ (B + ξ∗1 + ξ2)|ξ2.
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Then, as in Remark 3.2, we obtain

P (θ ∈ C̃I
1−α

n ) = P (p̂n ≤ Ĥ−1
n (1− α)) + o(1) = P (Ĥn(p̂n) ≤ 1− α) + o(1) → 1− α,

where the last convergence is implied by Corollary 3.1 and consistency of Ĥn.

Remark 3.5 The result in Corollary 3.1 can also be used if interest is in right-tailed or two-

tailed tests. Consider first a right-tailed p-value, say p̂n,r := P ∗(T ∗
n > Tn) = 1 − L̂n(Tn) =

1− p̂n (notice that, because the conditional cdf of T ∗
n is continuous in the limit, this p-value is

asymptotically equivalent to P ∗(T ∗
n ≥ Tn)). It holds that Hn,r(u) := P (p̂n,r ≤ u) = P (p̂n ≥

1 − u) = 1 − Hn(1 − u) + op(1) uniformly in u. Therefore, the modified right-tailed p-value,

p̃n,r := Hn,r(p̂n,r), satisfies

p̃n,r := 1−Hn(1− p̂n,r) + op(1) = 1−Hn(p̂n) + op(1)
d→ U[0,1]

by Corollary 3.1. Similarly, for two-tailed tests we can use the equal-tailed bootstrap p-value

p̃n,et := 2min{L̂n(Tn), 1 − L̂n(Tn)} = 2min{p̃n, 1 − p̃n,r} = 2min{p̃n, 1 − p̃n}, which satisfies

p̃n,et →d U[0,1] by Corollary 3.1 and the continuous mapping theorem.

3.2.1 Plug-in approach

In view of Theorem 3.1, a simple approach to estimating Hn(u) = P (p̂n ≤ u) is to use

Ĥn(u) = Fϕ̂n
(G−1

γ̂n
(u)),

where γ̂n and ϕ̂n denote consistent estimators of γ and ϕ, respectively. This leads to a plug-in

modified p-value defined as

p̃n = Fϕ̂n
(G−1

γ̂n
(p̂n)).

By consistency of γ̂n and ϕ̂n and continuity of Fϕ and Gγ , it follows immediately that

p̃n = Fϕ(G
−1
γ (p̂n)) + op(1)

d→ Fϕ(G
−1
γ (Gγ(F

−1
ϕ (U[0,1])))) = U[0,1].

This result is summarized next.

Corollary 3.2 Under Assumptions 1 and 2, if (γ̂n, ϕ̂n) →p (γ, ϕ) then p̃n = Fϕ̂n
(G−1

γ̂n
(p̂n)) →d

U[0,1].

The plug-in approach relies on consistent estimators of the asymptotic distributions Gγ and

Fϕ, but does not require estimating the ‘bias term’ Bn. When estimating γ and ϕ is simple, this

approach is attractive since it does not require any double resampling. However, computation

of γ and ϕ is case specific and may be cumbersome in practice. An automatic approach is to

use the bootstrap to estimate Hn(u), as we describe next.

3.2.2 Double bootstrap

Following Beran (1987, 1988), we can estimate Hn(u) with the bootstrap. That is, we let

Ĥn(u) = P ∗(p̂∗n ≤ u),
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where p̂∗n is the bootstrap analogue of p̂n. Since p̂n is itself a bootstrap p-value, computing p̂∗n

requires a double bootstrap. In particular, let D∗∗
n denote a further bootstrap sample of size

n based on D∗
n and some additional bootstrap variates (defined jointly with Dn and D∗

n on a

possibly extended probability space); let T ∗∗
n denote the bootstrap version of T ∗

n computed on

D∗∗
n , i.e. T ∗∗

n = T (D∗∗
n ). With this notation, the second-level bootstrap p-value is defined as

p̂∗n := P ∗∗(T ∗∗
n ≤ T ∗

n),

where P ∗∗ denotes the bootstrap probability measure conditional on D∗
n and Dn (making p̂∗n a

function of D∗
n and Dn). This leads to a double bootstrap modified p-value, as given by

p̃n := Ĥn(p̂n) = P ∗(p̂∗n ≤ p̂n).

In order to show that p̃n = Ĥn(p̂n) →d U[0,1], we add the following assumption.

Assumption 3 For ξ1 and ξ2 as defined in Assumptions 1 and 2, (i) T ∗∗
n − B̂∗

n
d∗∗→p∗ ξ1, in

probability, and (ii) T ∗
n − B̂∗

n
d∗→p ξ1 − ξ2.

Assumption 3 complements Assumptions 1 and 2 by imposing high-level conditions on the

second-level bootstrap statistics. Specifically, Assumption 3(i) assumes that T ∗∗
n has asymptotic

distribution Gγ only after we subtract B̂∗
n. This term is the second-level bootstrap analogue of

B̂n. It depends only on the first-level bootstrap data D∗
n and is not random under P ∗∗. The

second part of Assumption 3 follows from Assumption 2 in the special case that B̂∗
n−B̂n = op∗(1),

in probability, i.e. when ξ2 = 0 a.s., implying Fϕ = Gγ . When Fϕ ̸= Gγ , B̂
∗
n is not a consistent

estimator of B̂n. However, under Assumption 3,

T ∗
n − B̂∗

n = (T ∗
n − B̂n)− (B̂∗

n − B̂n)
d∗→p ξ1 − ξ2 = F−1

ϕ (U[0,1])

implying that T ∗
n − B̂∗

n mimics the distribution of Tn − B̂n. This suffices for proving the

asymptotic validity of the double bootstrap modified p-value, p̃n = Ĥn(p̂n), as proved next.

Theorem 3.2 Under Assumptions 1, 2, and 3, it holds that p̃n = Ĥn(p̂n) →d U[0,1].

Theorem 3.2 shows that prepivoting the standard bootstrap p-value p̂n by applying the

mapping Ĥn transforms it into an asymptotic uniformly distributed random variable. This

result holds under Assumptions 1, 2, and 3, independently of whether Gγ = Fϕ or not. When

Gγ = Fϕ then p̂n →d U[0,1] (as implied by Theorem 3.1). In this case, the prepivoting approach

is not necessary to obtain a first order asymptotic valid test although it might help further

reducing the size distortion of the test. This corresponds to the setting of Beran (1987, 1988),

where prepivoting was proposed as a way of reducing the level distortions of confidence intervals.

When Gγ ̸= Fϕ then p̂n is not asymptotically uniform and a standard bootstrap test based on

p̂n is asymptotically invalid, as shown in Theorem 3.1. In this case, prepivoting transforms an

asymptotically invalid bootstrap p-value into one that is asymptotically valid. This setting was

not considered by Beran (1987, 1988) and is new to our paper.
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3.3 Bootstrap p-value based on Tn − B̂n

The double bootstrap modified p-value p̃n depends only on the statistic Tn and their bootstrap

analogues T ∗
n and T ∗∗

n . It does not involve computing explicitly B̂n or B̂∗
n, but in some applica-

tions it can be computationally costly as it requires two levels of resampling. As it turns out, we

can show that p̃n is asymptotically equivalent to a single-level bootstrap p-value that is based

on bootstrapping the statistic Tn − B̂n, as we show next.

By definition, the double bootstrap modified p-value is given by p̃n := P ∗(p̂∗n ≤ p̂n), where

p̂∗n := P ∗∗(T ∗∗
n ≤ T ∗

n) = P ∗∗(T ∗∗
n − B̂∗

n ≤ T ∗
n − B̂∗

n) = Gγ(T
∗
n − B̂∗

n) + op∗(1),

in probability, given Assumption 3. Similarly, under Assumptions 1 and 2,

p̂n := P ∗(T ∗
n ≤ Tn) = P ∗(T ∗

n − B̂n ≤ Tn − B̂n) = Gγ(Tn − B̂n) + op(1).

It follows that

p̃n := P ∗(p̂∗n ≤ p̂n) = P ∗(Gγ(T
∗
n − B̂∗

n) ≤ Gγ(Tn − B̂n)) + op(1)

= P ∗(T ∗
n − B̂∗

n ≤ Tn − B̂n) + op(1)

because Gγ is continuous. We summarize this result in the following corollary.

Corollary 3.3 Under Assumptions 1, 2, and 3, p̃n = P ∗(T ∗
n − B̂∗

n ≤ Tn − B̂n) + op(1).

Theorem 3.2 shows that p̃n →d U[0,1] and hence is asymptotically valid. In view of this,

Corollary 3.3 shows that removing B̂n from Tn and computing a bootstrap p-value based on

the new statistic, Tn− B̂n, also solves the invalidity problem of the standard bootstrap p-value,

p̂n = P ∗(T ∗
n ≤ Tn). Note that we do not require ξ2 = 0, i.e. B̂n −Bn and B̂∗

n − B̂n do not need

to converge to zero.

Corollary 3.3 is useful when B̂n and B̂∗
n are easy to compute, e.g. when they are available

analytically as functions of Dn and D∗
n, respectively, as it avoids implementing a double boot-

strap. When deriving B̂n and B̂∗
n explicitly is cumbersome or impossible, the double bootstrap

modified p-value p̃n is a convenient alternative since it depends only on Tn, T
∗
n , and T ∗∗

n . It is

important to note that none of these approaches requires the consistency of B̂n and B̂∗
n.

3.4 Special case: Tn is asymptotically Gaussian

In this section, we specialize Assumptions 1, 2, and 3 to the case where Tn =
√
n(θ̂n − θ) is a

normalized parameter estimator whose limiting distribution is normal. For simplicity, we focus

on θ being a scalar but the results generalize to the multivariate context. We consider the

following special case of Assumption 1.

Assumption 1′ It holds that Tn −Bn →d N(0, v2), where v2 > 0.

Assumption 1′ covers statistics Tn based on asymptotically biased estimators: when Bn →p

B, we have Tn →d N
(
B, v2

)
, in which case B is the asymptotic bias of θ̂n. More generally, we

can interpret Bn as a bias term that approximates E(
√
n(θ̂n − θ)) although Bn does not need

to have a limit. Note that Assumption 1′ obtains from Assumption 1 when we let ξ1 ∼ N(0, v2)

and Gγ(u) = Φ(u/v), in which case γ = v.

16



Let D∗
n denote a bootstrap sample from Dn and let θ̂∗n be a bootstrap version of θ̂n. The

bootstrap analogue of Tn is T ∗
n =

√
n(θ̂∗n − θ̂n).

Assumption 2′ It holds that (i) T ∗
n − B̂n

d∗→p N(0, v2), and (ii)(
Tn −Bn

B̂n −Bn

)
d→ N(0, V ), V := (vij), i, j = 1, 2,

where v2d := v11 + v22 − 2v12 > 0 with v11 := v2 > 0.

Assumption 2′(i) requires the bootstrap statistic T ∗
n − B̂n to mimic the asymptotic distri-

bution of Tn −Bn, as in Assumption 2(i). However, and contrary to Assumption 2(i), here this

limiting distribution is the zero mean Gaussian distribution (i.e. Gγ(u) = Φ(u/v)), which means

that we can interpret B̂n as a bootstrap bias correction term, i.e. B̂n = E∗(
√
n(θ̂∗n − θ̂n)). As-

sumption 2′(ii) assumes that B̂n − Bn is also asymptotically distributed as a zero mean Gaus-

sian random variable (jointly with Tn −Bn).
3 An implication of this assumption is that

Tn − B̂n = (Tn −Bn)− (B̂n −Bn)
d→ N(0, v2d), (3.1)

where v2d := v11 + v22 − 2v12. We do not require V to be positive definite; for instance, v22 = 0

whenever B̂n−Bn = op(1), and in fact V can be rank deficient even when v22 > 0, one example

being that studied in Section 2. However, we do impose the restriction that v2d > 0. This

ensures that the limiting distribution function of Tn − B̂n, given by Fϕ(u) = Φ(u/vd), is well-

defined and continuous, as assumed in Assumption 2(ii). Note that we can let ϕ = V in this

case, or simply set ϕ = vd.

Let p̂n denote the standard bootstrap p-value as defined in Section 3. We then obtain the

following result.

Corollary 3.4 Under Assumptions 1′ and 2′, p̂n →d Φ(mΦ−1(U[0,1])), where m2 := v2d/v
2.

Corollary 3.4 follows immediately from Theorem 3.1 when we let Gγ(u) = Φ(u/v) and

Fϕ(u) = Φ(u/vd). It shows that the asymptotic distribution of p̂n is uniform only when m = 1,

or equivalently when v2d = v2. In this case, the difference B̂n − Bn is op(1). When v2d ̸= v2,

B̂n−Bn is random even in the limit, implying that the limiting bootstrap distribution function

of T ∗
n is conditionally random. Although random limit bootstrap measures do not necessarily

invalidate bootstrap inference, as discussed by Cavaliere and Georgiev (2020), this is not the

case here. However, we can solve the problem of bootstrap invalidity by applying the prepivoting

approach or by modifying the test statistic from Tn to Tn − B̂n.

To describe the prepivoting approach, note that the limiting distribution of p̂n is given by

H(u) := P (p̂n ≤ u) = Φ(m−1Φ−1(u)).

Hence, a plug-in approach amounts to estimating m2 := v2d/v
2, where v2 and v2d are defined in

Assumption 2′. Suppose that v̂2n and v̂2d,n are consistent estimators of v2 and v2d (i.e., assume that

3In terms of Assumption 2, Assumption 2′ corresponds to the case where the vector ξ = (ξ1, ξ2)
′ is a multi-

variate normal distribution with covariance matrix V .
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(v̂2n, v̂
2
d,n) →p (v

2, v2d)) and let m̂2
n := v̂2d,n/v̂

2
n. Then, by Corollary 3.2, it immediately follows that

p̃n = Φ(m̂−1
n Φ−1(p̂n))

d→ U[0,1]

under Assumptions 1′ and 2′. For brevity, we do not formalize this result here.

To describe the double bootstrap modified p-value, p̃n = Ĥn(p̂n), when applied to the special

case where Tn satisfies Assumption 1′, we now introduce Assumption 3′.

Assumption 3′ Let T ∗∗
n =

√
n(θ̂∗∗n − θ̂∗n) and suppose that (i) T ∗∗

n − B̂∗
n

d∗∗→p∗ N(0, v2), in

probability, and (ii) T ∗
n − B̂∗

n
d∗→p N(0, v2d), where v2d is as defined in Assumption 2′(ii).

Under Assumption 3′(i), the double bootstrap distribution of T ∗∗
n − B̂∗

n mimics the distribu-

tion of T ∗
n − B̂n, where the double bootstrap bias term B̂∗

n = E∗∗(
√
n(θ̂∗∗n − θ̂∗n)) is asymptoti-

cally centered at B̂n under Assumption 3′(ii). When v2d ̸= v2, the double bootstrap bias is not

a consistent estimator of B̂n, but this is not needed for the asymptotic validity of the modified

double bootstrap p-value p̃n = Ĥn(p̂n) defined in Section 3.

By application of Theorem 3.2, p̃n = Ĥn(p̂n) →d U[0,1] under Assumptions 1′, 2′, and 3′. We

can also provide a result analogous to Corollary 3.3 under these assumptions. In this case, if

closed-form expressions for B̂n and B̂∗
n are not available, we can approximate these bootstrap

expectations by Monte Carlo simulations and then compute P ∗(T ∗
n − B̂∗

n ≤ Tn − B̂n) as a valid

bootstrap p-value. Note, however, that this approach is computationally as intensive as the

prepivoting approach based on p̃n since it too requires two layers of resampling.

Remark 3.6 Contrary to Beran (1987, 1988), in our context the first level of prepivoting, e.g.

by the double bootstrap, is used to obtain an asymptotically valid bootstrap p-value. Therefore,

inference based on p̃n does not necessarily provide an asymptotic refinement over inference based

on an asymptotic approach that does not require the bootstrap. Nevertheless, the Monte Carlo

results in Table 1 seem to suggest an asymptotic refinement for the double bootstrap, at least for

the non-parametric bootstrap scheme.

In the special case where the bias term Bn is of sufficiently small order, the arguments in

Beran (1987, 1988) apply, and an asymptotic refinement can be obtained. We also conjecture

that, in the general case, an asymptotic refinement could be obtained by further iterating the

bootstrap.

3.5 A more general set of high-level conditions

We conclude this section by providing an alternative set of high-level conditions that cover

bootstrap methods for which T ∗
n − B̂n has a different limiting distribution than Tn −Bn. This

may happen, for example, when the first-level bootstrap does not match the variance of the

original statistic.

Assumption 4 Assumption 2 holds with part (i) replaced by (i) T ∗
n − B̂n

d∗→p ζ1, where Jγ(u) =

P (ζ1 ≤ u) is a continuous cdf.

Under Assumption 4, T ∗
n − B̂n does not replicate the distribution of Tn − Bn. This is

to be understood in the sense that there does not exist a non-random (with respect to P ∗,
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i.e., conditional on the original data) term, B̂n, such that T ∗
n − B̂n has the same asymptotic

distribution as Tn −Bn.

Remark 3.7 An important case that is covered by Assumption 4 is when there is a random

(with respect to P ∗, i.e. depending on the bootstrap data) term, say B∗
n, such that T ∗

n−B∗
n

d∗→p ξ1

and hence has the same asymptotic distribution as Tn−Bn. Clearly, this violates Assumption 2

unless B∗
n−B̂n

p∗→p 0. However, letting B
∗
n and ζ1 be such that B∗

n
d∗→p ζ1−ξ1, then Assumption 4

covers this case.

As illustrated by Remark 3.7, Assumption 4 generalizes Assumption 2 to allow for bootstrap

methods where the ’centering term’ B∗
n depends on the bootstrap data. An important example

that falls into this case is the pairs bootstrap, which we study in more detail in Section 4.3.

The asymptotic distribution of the bootstrap p-value under Assumption 4 is given in the

following theorem. The proof is identical to that of Theorem 3.1, with Gγ replaced by Jγ , and

hence omitted.

Theorem 3.3 If Assumptions 1 and 4 hold then p̂n →d Jγ(F
−1
ϕ (U[0,1])).

Clearly, a plug-in approach based on Gγ as described in Section 3.2.1 would be invalid

because Gγ ̸= Jγ in general. However, it follows straigthforwardly by the same arguments as

applied in Section 3.2.1 that a plug-in approach based on Jγ will deliver an asymptotically valid

plug-in modified p-value.

To implement an asymptotically valid double bootstrap modified p-value we consider the

following high-level condition.

Assumption 5 Assumption 3 holds with part (i) replaced by (i) T ∗∗
n −B̂∗

n
d∗∗→p∗ ζ1, in probability,

where ζ1 is defined in Assumption 4.

Under Assumption 5, the second-level bootstrap statistic, T ∗∗
n − B̂∗

n, replicates the distribu-

tion of the first-level statistic, T ∗
n − B̂n. Thus, the second-level bootstrap p-value is

p̂∗n = P ∗∗(T ∗∗
n ≤ T ∗

n) = P ∗∗(T ∗∗
n − B̂∗

n ≤ T ∗
n − B̂∗

n)

= Jγ(T
∗
n − B̂∗

n) + o∗p(1)
d∗→p Jγ(ξ1 − ξ2) = Jγ(F

−1
ϕ (U[[0,1]))

under Assumption 5. Hence, the second-level bootstrap p-value has the same asymptotic distri-

bution as the original bootstrap p-value. It follows that the double bootstrap modified p-value,

p̃n := Ĥn(p̂n) = P ∗(p̂∗n ≤ p̂n), is asymptotically valid, which is stated next. The proof is essen-

tially identical to that of Theorem 3.2 and hence omitted.

Theorem 3.4 Under Assumptions 1, 4, and 5, it holds that p̃n = Ĥn(p̂n) →d U[0,1].

Remark 3.8 Consider again the case with a random bootstrap centering term in Remark 3.7,

where B∗
n

d∗→p ζ1 − ξ1 such that T ∗
n − B∗

n
d∗→p ξ1. Within this setup, we can consider double

bootstrap methods such that, for a random (with respect to P ∗∗) term B∗∗
n we have T ∗∗

n −B∗∗
n

d∗∗→p∗

ξ1, in probability. Thus, the asymptotic distribution of the second-level bootstrap statistic mimics

that of the first-level statistic. When B∗∗
n and ζ1 are such that B∗∗

n
d∗∗→p∗ ζ1 − ξ1, in probability,

then Assumption 5 is satisfied. As in Remark 3.7 this setup allows us to cover the pairs bootstrap.
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Remark 3.9 In the case of asymptotically Gaussian statistics discussed in Section 3.4, Assump-

tions 4 and 5 simplify straightforwardly. In Assumption 2′(i) we would assume that T ∗
n−B̂n

d∗→p

N(0, v2s) and in Assumption 3′(i) that T ∗∗
n − B̂∗

n
d∗∗→p∗ N(0, v2s), in probability, for some v2s > 0,

while the rest of Assumptions 1′–3′ are unchanged. The results of Section 3.4 continue to ap-

ply under these more general conditions, replacing Gγ(u) = Φ(u/v) with Jγ(u) = Φ(u/vs) and

consequently defining m := v2d/v
2
s .

4 Applications

4.1 Inference under heavy tails

Setup. We consider a simple location model with heavy-tailed data; thus demonstrating how

our analysis applies to a non-Gaussian asymptotic framework.

Consider a sample of n i.i.d. random variables {yt}. Interest is in inference on θ in the

location model

yt = θ + εt, E(εt) = 0,

when the εt’s follow a symmetric, stable random variable S (α) with tail index α ∈ (1, 2) and the

location parameter is local to zero, i.e. θ = n1/α−1c.4 Under these assumptions, E(|εt|α+δ) =

+∞ for any δ ≥ 0; in particular, εt has infinite variance. Notice that θ is local of order n1/α−1

rather than the usual n−1/2 because of the slower convergence rate of the OLS-type estimator

when the variance of εt is infinite. We consider a special case of the estimator analyzed in

Section 2, viz.

θ̂n := ωθ̂long + (1− ω)θ̂short,

where θ̂long := ȳn, θ̂short := 0, and ω denotes a fixed combination weight. It holds that

Tn := n1−1/α(θ̂n − θ) = (ω − 1)c+ ωn1−1/αε̄n ∼ B + ωS (α) , (4.1)

where B := (ω−1)c; equivalently, Tn−B ∼ ξ1 := ωS(α). Hence, Assumption 1 is satisfied with

Gγ(u) = P (ωS(α) ≤ u) = Ψα(ω
−1u), where Ψα(u) := P (S(α) ≤ u) is continuous. Inference

based on quantiles of ξ1 is invalid because it misses the term B.

Bootstrap. It is well known that the standard bootstrap fails to be valid under infinite vari-

ance (Knight, 1989). The ‘m out of n’ bootstrap (see Politis et al., 1999, and the references

therein) is an attractive option, but fails to mimic the non-centrality parameter B, see Re-

mark 4.1 below. Instead, we consider the parametric bootstrap of Cornea-Madeira and David-

son (2015), which only requires a consistent estimator α̂n of the tail index α, assumed to lie in

a compact set. The bootstrap sample is generated as

y∗t = θ̂long + ε∗t , ε∗t ∼ i.i.d.S(α̂n),

and the bootstrap estimator is θ̂∗n := ωθ̂∗long = ω(θ̂long + ε̄∗n) with ε̄∗n := n−1
∑n

t=1 ε
∗
t . The

4The results in this section can easily be generalized to the case where the εt’s are not necessarily symmetric
and/or are in the domain of attraction of a stable law with index α ∈ (0, 1), as in Cornea-Madeira and Davidson
(2015).
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bootstrap analogue of Tn then satisfies

T ∗
n := n1−1/α(θ̂∗n − θ̂long) = ωn1−1/αε̄∗n + B̂n with B̂n := (ω − 1)n1−1/αθ̂long.

Now, n1−1/αε̄∗n
d∗→p S(α) by Proposition 1 in Cornea-Madeira and Davidson (2015) and, there-

fore,

T ∗
n − B̂n

d∗→p ξ1 := ωS(α).

This shows that Assumption 2(i) is satisfied in this example. Notice that the bias term in the

bootstrap world satisfies, jointly with (4.1),

B̂n −B = (ω − 1)n1−1/αε̄n ∼ (ω − 1)S(α) =: ξ2.

Specifically, because both Tn and B̂n depend on the data through ε̄n only, we have that (ξ1, ξ2) ∼
(ω, ω−1)S(α), implying that ξ1−ξ2 ∼ S(α). Hence, Assumption 2(ii) is satisfied with Fϕ (u) =

P (S(α) ≤ u) = Ψα(u). Since the cdf of ξ1 ∼ ωS(α) can be written as Gγ(u) = Ψα(ω
−1u), it

follows by Theorem 3.1 that p̂n →d Gγ(F
−1
ϕ (U[[0,1])) = Ψα(ω

−1Ψ−1
α (U[0,1])) and, therefore,

Hn(u) := P (p̂n ≤ u) → H(u) := P (Ψα(ω
−1Ψ−1

α (U[[0,1])) ≤ u) = Ψα(ωΨ
−1
α (u)),

which differs from u unless ω = 1.

Because ω is known and we can estimate α consistently with α̂n, we can estimate H(u)

consistently with Ĥn(u) := Ψα̂n(ωΨ
−1
α̂n

(u)) and obtain a valid plug-in modified p-value,

p̃n = Ĥn(p̂n) = Ψα̂n(ωΨ
−1
α̂n

(p̂n)),

by application of Corollary 3.2.

Alternatively, we can estimateHn(u) using the double bootstrap estimator Ĥn(u) := P ∗(p̂∗∗n ≤
u), where p̂∗∗n := P ∗∗(T ∗∗

n ≤ T ∗
n). Specifically, let the double bootstrap sample {y∗∗t } be gener-

ated as

y∗∗t = θ̂∗long + ε∗∗t , ε∗∗t ∼ i.i.d.S(α̂n),

and set θ̂∗∗n := ωθ̂∗∗long = ωθ̂∗long +ωε̄∗∗n , where ε̄∗∗n := n−1
∑n

t=1 ε
∗∗
t . The (second-level) bootstrap

analogue of T ∗
n then satisfies

T ∗∗
n := n1−1/α(θ̂∗∗n − θ̂∗long) = ωn1−1/αε̄∗∗n + B̂∗

n with B̂∗
n := (ω − 1)n1−1/αθ̂∗long.

Since ε∗∗t is generated from S(α̂n), where α̂n depends only on Dn, the distribution of ε∗∗t ,

conditionally on D∗
n and Dn, is the same as the distribution of ε∗t , conditionally on Dn. This

implies that

n1−1/αε̄∗∗n
d∗∗→p∗ S(α),

in probability, by Proposition 1 of Cornea-Madeira and Davidson (2015). Therefore,

T ∗∗
n − B̂∗

n
d∗∗→p∗ ξ1 = ωS(α),

in probability, showing that Assumption 3(i) is satisfied. Since

B̂∗
n − B̂n = (ω − 1)n1−1/α(θ̂∗long − θ̂long) = (ω − 1)n1−1/αε̄∗n
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and T ∗
n − B̂n = ωn1−1/αε̄∗n, Assumption 3(ii) is also satisfied in this example. Thus, p̃n =

Ĥn(p̂n) →d U[0,1] by Theorem 3.2.

Remark 4.1 Consider the ‘m out of n’ bootstrap data generating process,

y∗t = θ̂long,n + ε∗t , t = 1, . . . ,m,

where ε∗t is an i.i.d. sample from the residuals ε̂t = yt − θ̂long,n, t = 1, . . . , n. Note that we now

index θ̂long,n with n to emphasize the fact that θ̂long,n is based on n observations whereas the

bootstrap sample size is m. Then

T ∗
m := m1−1/α(θ̂∗m − θ̂long,n) = ωm1−1/αε̄∗m + (ω − 1)m1−1/αθ̂long,n,

where m1−1/αε̄∗m
d∗→p S(α) as m → ∞; see Arcones and Giné (1989). Moreover, if m = o(n),

B̂m := (ω − 1)m1−1/αθ̂long,n = (ω − 1)m1−1/αn1/α−1(n1−1/αθ̂long,n) = Op((m/n)1/α−1) = op(1),

which shows that T ∗
m

d∗→p ωS(α). Hence, Assumption 2(i) is satisfied with ξ1 := ωS(α) and

B̂n = 0. Since B := (ω − 1)c ̸= 0, Assumption 2(ii) holds with ξ2 := −B a.s. By Remark 3.1,

it then follows that

p̂m := P ∗(T ∗
m ≤ Tn)

d→ Gγ(G
−1
γ (U[0,1])−B)) = Ψα(Ψ

−1
α (U[0,1])−B).

This shows that the limiting distribution of p̂m depends on B. Since B cannot be consistently

estimated, the ‘m out of n’ bootstrap cannot be used to solve the problem.

4.2 Linear regression with omitted control variables

Setup. In this section we consider inference about a target coefficient in a linear regression with

a potentially large number of control variables, some of which may have limited explanatory

power. Inference is based on a (misspecified) ‘short’ regression which omits controls whose

coefficients are ‘small’ as a function of the sample size. Excluding such controls (e.g., using

a pretest procedure) leads to estimators with omitted variable bias and invalidates standard

applications of the bootstrap (e.g. Leeb and Pötsher, 2005). We apply the approach described

in Section 3 to solve this invalidity problem.

More specifically, data are assumed to be generated by the linear model

y = xβ +Qη + Zδ + ε, (4.2)

where εt|W ∼ i.i.d.(0, σ2) with W := (x,Q,Z). The n × 1 vector x contains observations on

a target regressor, and Q,Z are matrices of control variables. The matrix Q contains the set

of controls that are included in the model (baseline controls), whereas Z contains potential

additional controls of limited explanatory power, i.e., their associated coefficients are local to

zero and of the form

δ = cn−1/2.

This setup is similar to Li and Müller (2021), who develop an inference procedure which exploits

a bound on the quadratic mean of the effect of the control variables on y. As Li and Müller
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(2021), we assume for simplicity that x′x = n and Z ′Z = nIp, where p = dim(Z); moreover,

both x and Z have been projected off the baseline controls Q, i.e. Q′x = 0 and Z ′Q = 0.

The goal is to test the null hypothesis H0 : β = 0. To do so, the econometrician estimates β

and η by running the ‘short’ regression of y on (x,Q), i.e. Z is omitted from the regression. We

let b̃n := (β̃n, η̃
′
n, 0

′)′ denote the restricted OLS estimator of b := (β, η′, δ′)′ and ε̃ := y−Wb̃n the

corresponding residuals. We reserve the notation b̂n := (β̂n, η̂
′
n, δ̂

′
n)

′ for the OLS estimator from

the ‘long’ regression (4.2). The latter estimator is used below to generate bootstrap samples.

The t-ratio for testing H0 is given by

Tn :=
β̃n

s(β̃n)
=

S−1
xx.QSxy.Q

σ̃n

√
n−1S−1

xx.Q

=
n1/2Sxy

σ̃n
,

where we define

s2(β̃n) := σ̃2
nn

−1S−1
xx.Q = σ̃2

nn
−1 with σ̃2

n := n−1ε̃′ε̃,

and note that Sxx.Q = 1 and Sxy.Q = Sxy because x′x = n and Q′x = 0.

We impose the following conditions.

Assumption OC (i) εt|W ∼ i.i.d.(0, σ2), where W = (x,Q,Z); (ii) SWW →p Σ, where Σ =

(Σab)a,b∈{x,Q,Z} is positive definite; (iii) n1/2SWε →d N(0, σ2Σ).

Assumption OC(i) formalizes the i.i.d. assumption on ε, conditional on W . Assump-

tions OC(ii) and OC(iii) are high-level conditions for which more primitive conditions are well

known. The asymptotic distribution of Tn is presented in the following lemma.

Lemma 4.1 Under Assumption OC and H0 : β = 0, it holds that Tn − B →d N(0, 1), where

B := ΣxZσ
−1c.

Lemma 4.1 implies that Assumption 1′ holds for this example with v2 = 1 and Bn =

ΣxZσ
−1c =: B. Hence, unless ΣxZ = 0 or c = 0, inference based on standard Gaussian critical

values is invalid even if the explanatory power of the omitted controls is limited since we cannot

consistently estimate B because it depends on the local parameter c.

Bootstrap. We generate the bootstrap sample as

y∗ = xβ̂n +Qη̂n + Zδ̂n + ε∗ = Wb̂n + ε∗,

where ε∗|Dn ∼ N(0, σ̂2
nIn) with Dn := {y,W}, σ̂2

n = n−1ε̂′ε̂, and ε̂ = y −Wb̂n.
5

Let b̃∗n := (β̃∗
n, η̃

∗′
n , 0

′)′ denote the bootstrap OLS estimators from the ‘short’ regression of y∗

on (x,Q) and let ε̃∗ := y∗ − xβ̃∗
n − Qη̃∗n := y∗ −Wb̃∗n denote the corresponding residuals. The

bootstrap analogue of Tn is

T ∗
n := (β̃∗

n − β̂n)/s(β̃
∗
n) = n1/2(β̃∗

n − β̂n)/σ̃
∗
n,

5The same results hold if we let ε∗|Dn ∼ N
(
0, σ̃2

nIn
)
. We can also establish similar results for the nonpara-

metric bootstrap where ε∗ is generated from the empirical distribution function of ε̃ or ε̂ under a slighly stronger
set of assumptions.
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where

s2(β̃∗
n) := σ̃∗2

n n−1S−1
xx.Q = n−1σ̃∗2

n

and σ̃∗2
n := n−1ε̃∗′ε̃∗.

Lemma 4.2 Under Assumption OC it holds that (i)

T ∗
n − B̂n

d∗→p N(0, 1), where B̂n := SxZσ
−1n1/2δ̂n,

and (ii) imposing also H0 : β = 0,(
Tn −B

B̂n −B

)
d→ N(0, V ), where V :=

(
1 0

0 ΣxZΣ
−1
ZZ.xΣZx

)
.

Lemma 4.2 shows that Assumption 2′(i) holds with v2 = 1 and B̂n := SxZσ
−1n1/2δ̂n and

that Assumption 2′(ii) holds with v2d = 1 + ΣxZΣ
−1
ZZ.xΣZx > 0 and ΣZZ.x = I − ΣZxΣxZ .

Remark 4.2 We can show that

B̂n −B = ΣxZσ
−1n1/2(δ̂n − δ) + op (1) ,

where

n1/2(δ̂n − δ) := S−1
ZZ.xn

1/2SZε.x
d→ N(0, σ2Σ−1

ZZ.x).

Hence, the bootstrap ‘bias term’ B̂n is not consistent for B. Instead,

B̂n −B
d→ N(0,ΣxZΣ

−1
ZZ.xΣZx) =: ξ2

(jointly with Tn −B
d→ N(0, 1) =: ξ1). Since

T ∗
n − B̂n|B̂n

d∗→p N(0, 1),

this implies that

T ∗
n

d∗→d N(B + ξ2, 1)|ξ2 ∼ B + ξ1 + ξ2|ξ2,

where
d∗→d denotes weak convergence in distribution; see Remark 3.3 and Cavaliere and Georgiev

(2020). Hence, the bootstrap distribution of T ∗
n is random in the limit and does not match the

limiting distribution of Tn, which is N(B, 1) under our assumptions; see Lemma 4.1. However,

because ξ2 has mean zero, this bootstrap replicates B on average.

By Corollary 3.4,

p̂n = P ∗(T ∗
n ≤ Tn)

d→ Φ(mΦ−1(U[0,1])) with m2 := 1 + ΣxZΣ
−1
ZZ.xΣZx,

which implies that, for any u ∈ (0, 1),

Hn(u) := P (p̂n ≤ u) → H(u) := Φ(Φ−1(u)/m).

Notice that when Z is univariate, m reduces to

m =

√
1

1− ρ2xZ
,
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where ρxZ = ΣxZ corresponds to the population correlation coefficient between x and Z. Hence,

m ∈ [1,∞) and equals one if and only if x and Z are orthogonal.

To sum up, this bootstrap is invalid in general. However, and crucially, inspection of the

asymptotic distribution H of the bootstrap p-value shows that, although it differs from the cdf

of a uniform random variable, it does not depend on the nuisance parameter B. This is essential

in order to restore bootstrap validity using the machinery in Section 3.

Remark 4.3 Consider an alternative (fixed-design) bootstrap which resamples from the ‘short’

regression, i.e. y∗ = xβ̃n+Qη̃n+ε∗, where ε∗|Dn ∼ N(0, σ̃2
nIn). The bootstrap analogue of Tn is

T ∗
n := (β̃∗

n − β̃n)/s(β̃
∗
n) = σ̃∗−1

n n1/2Sxε∗ = σ̃−1
n n1/2Sxε∗ + op∗(1), in probability,

because σ̃∗2
n − σ̃2

n
p∗→p 0. Since, conditionally on Dn, σ̃

−1
n n1/2Sxε∗ ∼ N(0, 1) for any n, it follows

that

T ∗
n

d∗→p N(0, 1).

This shows that Assumption 2′(i) is satisfied with B̂n = 0. Hence, this bootstrap does not

replicate B, not even on average. In terms of the bootstrap p-value we find

p̂n := P ∗(T ∗
n ≤ Tn) = Φ(Tn) + op(1)

d→ Φ(B +Φ−1(U[0,1])),

which implies that, for any u ∈ (0, 1),

P (p̂n ≤ u) → P (Φ(B +Φ−1(U[0,1])) ≤ u) = P (U[0,1] ≤ Φ(Φ−1(u)−B)) = Φ(Φ−1(u)−B) ̸= u.

Contrary to p̂n based on resampling from the ‘long’ regression, the limiting distribution of the

bootstrap p-value based on resampling from the ‘short’ regression depends on B. Since B cannot

be consistently estimated from the data, we cannot restore bootstrap validity using the prepivoting

approach.

Restoring bootstrap validity. One approach is to estimate H(u) := Φ(Φ−1(u)/m) con-

sistently using Ĥn(u) := Φ(Φ−1(u)/m̂n), where

m̂n := (1 + SxZS
−1
ZZ.xSZx)

1/2.

By Assumption OC, m̂n →p m, implying that a valid plug-in modified p-value is

p̃n = Ĥn(p̂n) = Φ(Φ−1(p̂n)/m̂n)

by application of Corollary 3.2.

Alternatively, we can estimateHn(u) using the double bootstrap estimator Ĥn(u) := P ∗(p̂∗n ≤
u), where p̂∗n := P ∗∗(T ∗∗

n ≤ T ∗
n) as described in Section 3.2.2. Specifically, let the second-level

bootstrap sample be

y∗∗ = xβ̂∗
n +Qη̂∗n + Zδ̂∗n + ε∗∗ := Wb̂∗n + ε∗∗,

where b̂∗n := (β̂∗
n, η̂

∗′
n , δ̂

∗′
n )

′ is obtained from the ‘long’ regression of y∗ on W , and we let

ε∗∗|{D∗
n, Dn} ∼ N(0, σ̂∗2

n In), where {D∗
n, Dn} := {y,W, y∗}. We let b̃∗∗n := (β̃∗∗

n , η̃∗∗′n , 0′)′ denote
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the restricted OLS estimator from regressing y∗∗ on (x,Q), and we define ε̃∗∗ := y −Wb̃∗∗n .

The second-level bootstrap analogue of Tn is defined as

T ∗∗
n := (β̃∗∗

n − β̂∗
n)/s(β̃

∗∗
n ) = n1/2(β̃∗∗

n − β̂∗
n)/σ̃

∗∗
n ,

since

s2(β̃∗∗
n ) := σ̃∗∗2

n n−1S−1
xx.Q = n−1σ̃∗∗2

n ,

where σ̃∗∗2
n := n−1ε̃∗∗′ε̃∗∗. We show in Lemma 4.3 below that Assumption 3′ is verified with

B̂∗
n := SxZσ

−1n1/2δ̂∗n, B̂n := SxZσ
−1n1/2δ̂n, and V as given in Lemma 4.2. The validity of the

double bootstrap modified p-value, p̃n = Ĥn(p̂n), then follows from Lemmas 4.1, 4.2 and 4.3.

Lemma 4.3 Under Assumption OC it holds that (i) T ∗∗
n −B̂∗

n
d∗∗→p∗ N(0, 1), in probability, where

B̂∗
n := SxZσ

−1n1/2δ̂∗n, and (ii) (
T ∗
n − B̂n

B̂∗
n − B̂n

)
d∗→p N(0, V ),

where B̂n and V are as defined in Lemma 4.2.

4.3 Inference after model averaging

Setup. We consider the case of inference on a target parameter based on averaging across

different econometric models. The results in this section generalize those of Section 2. In

particular, we consider model averaging based on M models and relax the Gaussianity and

known variance assumptions.

Assume that data are generated according to the linear DGP

y = xβ + Zδ + ε, (4.3)

where β is the (scalar) target parameter and εt|W ∼ i.i.d.(0, σ2) with W := (x, Z). The goal

is to test the null hypothesis H0 : β = 0.

The econometrician fits a set of M models, each of them based on different exclusion re-

strictions on the q-dimensional vector δ. This setup allows model averaging both explicitly and

implicity. The former follows, e.g., Hansen (2007). The latter includes the common practice of

robustness check in applied economics, where the significance of a target coefficient is evaluated

through an (often informal) assessment of its significance across a set of regressions based on

different sets of controls; see Oster (2019) and the references therein. Specifically, let Rm de-

note a q× qm selection matrix which selects the potential controls. The m-th model includes x

and Zm := ZRm as regressors, and the corresponding OLS estimator of β is

β̃m,n = S−1
xx.Zm

Sxy.Zm ,

where Sab.c is as defined previously. Note that if Rm = Iq, then Zm = Z and β̃m,n =

S−1
xx.ZSxy.Z =: β̂n is the OLS estimator based on the full set of controls Z. If Rm = 0 then

Zm = 0, in which case β̃m,n = (x′x)−1x′y is the OLS estimator based on the smallest possible

model that only includes x as a regressor.
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Given a set of fixed weights ω := (ω1, . . . , ωn)
′ ∈ H := {x ∈ [0, 1]M :

∑M
m=1 xm = 1}, the

model averaging estimator of β based on the M approximating models is the (linear) estimator

β̃n :=

M∑
m=1

ωmβ̃m,n.

Remark 4.4 We assume that the weights ω are fixed and independent of n. A popular example

in forecasting is to use equal weighting. We could allow for stochastic weights as long as these

are constant in the limit. This would be the case, for example, when the weights are based on

moments that can be consistently estimated.

In general, β̃n may suffer from finite sample and asymptotic bias, since it is based on aver-

aging over a set of possibly misspecified models. This implies that the asymptotic distribution

of Tn := n1/2(β̃n − β) may not be centered at zero, as we show next.

We impose the following conditions.

Assumption MA (i) εt|W ∼ i.i.d.(0, σ2), where W = (x, Z); (ii) SWW →p ΣWW :=

(
Σxx ΣxZ

ΣZx ΣZZ

)
with rank(ΣWW ) = q + 1; (iii) n1/2SWε →d N(0,Ω) with Ω := σ2ΣWW .

To describe the asymptotic distribution of Tn, we introduce the following notation. We let

ΣxZm := ΣxZRm, ΣZmZm := R′
mΣZZRm, Σxx.Zm := Σxx − ΣxZRm(R′

mΣZZRm)−1R′
mΣZx, and

ΣxZ.Zm := ΣxZ−ΣxZRm(R′
mΣZZRm)−1R′

mΣZZ . We also let An :=
∑M

m=1 ωmS−1
xx.Zm

n−1x′MZm ,

where MZm := In − Zm(Z ′
mZm)−1Z ′

m. Finally, d̄′M,n :=
∑M

m=1 ωmS−1
xx.Zm

(1,−SxZmS
−1
ZmZm

R′
m)

and d̄′M :=
∑M

m=1 ωmΣ−1
xx.Zm

(1,−ΣxZmΣ
−1
ZmZm

R′
m). With this notation,

β̃n = Any = Anxβ +AnZδ +Anε = β +AnZδ +Anε,

and the following lemma holds.

Lemma 4.4 Under Assumption MA and H0 : β = 0, it holds that Tn := n1/2(β̃n − β) satisfies

Tn −Bn =: n1/2Anε = d̄′M,n(n
1/2SWε)

d→ N(0, v2), (4.4)

where

v2 := d̄′MΩd̄M and Bn := n1/2AnZδ =

M∑
m=1

ωmS−1
xx.Zm

SxZ.Zmn
1/2δ. (4.5)

Lemma 4.4 shows that Assumption 1′ holds for this example with v2 and Bn as indicated

in (4.5). The asymptotic variance v2 is a quadratic form of Ω, whose weights d̄′M depend on

population moments of the regressors and on ω; see (B.4). The variance v2 can be consistently

estimated by replacing Ω and d̄M by consistent estimators. Alternatively, we can use the

bootstrap, as recently shown by Hounyo and Lahiri (2021).

However, inference based on critical values obtained from a normal distribution with mean

zero is invalid asymptotically due to the presence of Bn.

Remark 4.5 As (4.5) shows, Bn may not vanish in the limit, even if δ is small. To see this,

note that the order of magnitude of Bn is the same as that of n1/2δ because S−1
xx.Zm

SxZ.Zm →p
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Σ−1
xx.Zm

ΣxZ.Zm under our assumptions. Consequently, if δ is local to zero in the sense that

δ = cn−1/2 for some vector c ∈ Rq (as in, e.g., Hjort and Claeskens, 2003, and Liu, 2015), then

it follows that

Bn →p B :=
M∑

m=1

ωmΣ−1
xx.Zm

ΣxZ.Zmc,

which is not zero in general (unless, e.g., c = 0 or ΣxZ = 0). Hence, under the local-to-zero

assumption on δ,

Tn := n1/2(β̃n − β)
d→ N(B, v2),

showing that β̃n is consistent for β, but it is asymptotically biased. Because the asymptotic bias

B depends on c, which is not consistently estimable, we cannot obtain valid critical values from

a Gaussian distribution centered at some sample analogues of B and v2. In particular, replac-

ing B with B̂n =
∑M

m=1 ωmS−1
xx.Zm

SxZ.Zmn
1/2δ̂n is not asymptotically valid as the asymptotic

distribution of Tn − B̂n is not N(0, v2).

As we will show next, the presence of Bn complicates standard bootstrap inference. How-

ever, we will show that the modified p-value bootstrap approach described in Section 3 can be

successfully applied in this context. In particular, our modified bootstrap approach is asymp-

totically valid whether δ is fixed or local-to-zero. In the former case, Bn is Op(n
1/2) rather than

Op(1), implying that Bn diverges in probability and β̃n is not even consistent for β. Despite

this inconsistency, we can obtain a modified bootstrap p-value that is asymptotically valid.

Bootstrap. We consider a fixed regressor bootstrap (FRB) algorithm based on the full model.

More specifically, we generate the bootstrap sample as

y∗ = xβ̂n + Zδ̂n + ε∗,

where ε∗|Dn ∼ N(0, σ̂2
nIn), σ̂

2
n = n−1ε̂′ε̂ is the OLS residual variance from the full model, and

Dn = {y,W}. Similar results can be established for the nonparametric bootstrap where ε∗ is

obtained from the empirical distribution function of ε̂.

The model averaging estimator in the bootstrap world is given by

β̃∗
n :=

M∑
m=1

ωmβ̃∗
m,n,

where β̃∗
m,n := S−1

xx.Zm
Sxy∗.Zm is the bootstrap OLS estimator from the mth model. We can

write β̃∗
n = Any

∗, which implies that

β̃∗
n = Anxβ̂n +AnZδ̂n +Anε

∗.

It holds then that

T ∗
n := n1/2(β̃∗

n − β̂n) = B̂n + n1/2Anε
∗,

where

B̂n := n1/2AnZδ̂n =
M∑

m=1

ωmS−1
xx.Zm

SxZ.Zmn
1/2δ̂n.
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We can show that

T ∗
n − B̂n = n1/2Anε

∗ = d̄′M,n(n
1/2SWε∗)

d∗→p N(0, v2)

since n1/2SWε∗ |Dn ∼ N(0, Ω̂n) with Ω̂n := σ̂2
nSWW →p σ

2ΣWW =: Ω and d̄M,n →p d̄M . Hence,

Var∗(T ∗
n − B̂n) = d̄′M,nΩ̂nd̄M,n →p v

2 and Assumption 2′(i) is verified in this example. However,

B̂n is not close to Bn as n increases. In fact, we can show that

B̂n −Bn = AnZn1/2(δ̂n − δ)
d→ ξ2 := N(0, v22), (4.6)

given the asymptotic normality of n1/2(δ̂n − δ) and the fact that AnZ converges in probabil-

ity to
∑M

m=1 ωmΣ−1
xx.Zm

ΣxZ.Zm . This result implies that T ∗
n does not mimic the asymptotic

distribution of the original statistic Tn. Because the bias term in the bootstrap world is ran-

dom in the limit, the conditional distribution of T ∗
n is also random in the limit. This im-

plies the asymptotic invalidity of p̂n = P ∗(T ∗
n ≤ Tn), as we show next. To this end, define

b̄′M,n :=
∑M

m=1 ωmS−1
xx.Zm

SxZ.ZmS
−1
ZZ.x(−SZxS

−1
xx , Iq) and let b̄′M denote its probability limit.

Lemma 4.5 Under Assumption MA it holds that (i) T ∗
n − B̂n

d∗→p N(0, v2), and (ii) imposing

also H0 : β = 0, (
Tn −Bn

B̂n −Bn

)
=

(
d̄′M,n

b̄′M,n

)
n1/2SWε

d→ N(0, V ),

where

V =

(
d̄′MΩd̄M d̄′MΩb̄M

b̄′MΩd̄M b̄′MΩb̄M

)
=:

(
v11 v12

v21 v22

)
is positive definite and v2 = v11.

Lemma 4.5 implies that Assumptions 1′ and 2′ are satisfied in this example with v2 = v11

and v2d = v11+ v22− 2v12 > 0. Hence, by Theorem 3.1, the bootstrap p-value satisfies Hn(u) :=

P (p̂n ≤ u) → H(u) = Φ(m−1Φ−1(u)), where m2 := v2d/v
2. This proves the invalidity of the

standard bootstrap p-value, p̂n.

Restoring bootstrap validity. One approach is to estimate H(u) consistently using

Ĥn(u) := Φ(Φ−1(u)/m̂n), where m̂n := (v̂2d,n/v̂n)
1/2 and v̂2d,n := v̂11,n+v̂22,n−2v̂12,n with v̂ij,n de-

noting the sample analogues of vij defined in Lemma 4.5; for instance, v̂11,n = v̂2n = d̄′M,nΩ̂nd̄
′
M,n.

By Assumption MA, m̂n →p m, implying that a valid plug-in modified p-value is

p̃n = Ĥn(p̂n) = Φ(Φ−1(p̂n)/m̂n)

by application of Corollary 3.2.

Alternatively, we can estimateHn(u) using the double bootstrap estimator Ĥn(u) := P ∗(p̂∗∗n ≤
u), where p̂∗∗n := P ∗∗(T ∗∗

n ≤ T ∗
n) as described in Section 3. Specifically, let the double bootstrap

sample be

y∗∗ = xβ̂∗
n + Zδ̂∗n + ε∗∗,

where (β̂∗
n, δ̂

∗
n) is the OLS estimator of (β, δ) obtained from the full model and ε∗∗|{Dn, D

∗
n} ∼

N(0, σ̂∗2
n In), with D∗

n = {y∗,W}, σ̂∗2
n = n−1ε̂∗′ε̂∗, and ε∗ = y∗ − xβ̂∗

n − Zδ̂∗n.
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The double bootstrap analogue of Tn is defined as

T ∗∗
n := n1/2(β̃∗∗

n − β̂∗
n),

where β̃∗∗
n :=

∑M
m=1 ωmβ̃∗∗

m,n with β̃∗∗
m,n := S−1

xx.Zm
Sxy∗∗.Zm defined as the double bootstrap OLS

estimator from the mth model.

Lemma 4.6 Under Assumption MA, T ∗∗
n − B̂∗

n
d∗∗→p∗ N

(
0, v2

)
, in probability, where B̂∗

n :=

n1/2AnZδ̂∗n and (
T ∗
n − B̂n

B̂∗
n − B̂n

)
=

(
d̄′M,n

b̄′M,n

)
n1/2SWε∗

d∗→p N(0, V )

with B̂n := n1/2AnZδ̂n and V as defined in Lemma 4.5.

Lemma 4.6 shows that Assumption 3′ is verified in this example. The asymptotic validity

of the double bootstrap modified p-value, p̃n = Ĥn(p̂n), now follows from Lemmas 4.4–4.6 and

Theorem 3.2.

Extension to the pairs bootstrap. We now extend the previous results to the pairs

bootstrap, which is widely used in applications. Interestingly, the main difference with respect

to the FRB implemented above is that the centered pairs bootstrap statistic T ∗
n − B̂n no longer

replicates the distribution of T ∗
n − Bn, except if δ is local to zero (see Remark 4.5). Thus, the

pairs bootstrap is invalid, but we can prove validity of an appropriate modification of the pairs

bootstrap using the results in Section 3.5.

To simplify the discussion we consider the case with scalar zt in (4.3) and where we “average”

over only one model (M = 1), which is the simplest model in which zt is omitted from the

regression. That is, we estimate β by regression of y on x,

β̃n = S−1
xx Sxy.

This estimator corresponds to the model averaging estimator with M = 1, where all weight is

put on the smallest model. The statistic of interest is

Tn = n1/2(β̃n − β).

In this special case, Lemma 4.4 simplifies as follows.

Lemma 4.7 Suppose Assumption MA holds. Then

Tn −Bn →d N(0, v2),

where

v2 = σ2Σ−1
xx and Bn = S−1

xx Sxzn
1/2δ.

Consider now a pairs bootstrap sample {y∗, x∗, z∗}, based on resampling with replacement

from the tuples (yt, xt, z
′
t)
′, t = 1, . . . , n. As is standard, it is useful to recall that the bootstrap

data have the representation

y∗ = x∗β̂n + z∗δ̂n + ε∗,
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where ε∗ = (ε∗1, . . . , ε
∗
n)

′ and ε∗t is an i.i.d. draw from ε̂t = yt−xtβ̂n− ztδ̂n. The pairs bootstrap

model averaging estimator is

β̃∗
n := S−1

x∗x∗Sx∗y∗ = β̂n + S−1
x∗x∗Sx∗z∗ δ̂n + S−1

x∗x∗Sx∗ε∗ ,

and the pairs bootstrap statistic is

T ∗
n := n1/2(β̃∗

n − β̂n) = B∗
n + n1/2S−1

x∗x∗Sx∗ε∗

with

B∗
n := S−1

x∗x∗Sx∗z∗n
1/2δ̂n.

Therefore, and in contrast with the FRB, when the pairs bootstrap is implemented the term

B∗
n is stochastic under the bootstrap probability measure and replaces the bias term B̂n. This

difference is not innocuous because it implies that T ∗
n − B̂n no longer replicates the asymptotic

distribution of Tn −Bn, as shown in the next lemma.

We strengthen the previous conditions by adding the following.

Assumption MA2 (i) suptE ∥wt∥4 < ∞ and E|ε4t | < ∞; (ii) n−1
∑n

t=1 x
2
t ε

2
t →p σ2Σxx,

n−1
∑n

t=1 x
2
twtw

′
t →p Σr > 0, and n−1

∑n
t=1 x

2
twtεt →p 0.

Lemma 4.8 Suppose Assumptions MA and MA2 hold. Then

T ∗
n − B̂n

d∗→p N(0, v2 + κ2),

where

B̂n := S−1
xx Sxzn

1/2δ̂n

and κ2 := dr(δ)
′Σrdr(δ) with dr(δ) := δ(Σ−1

xx ,−Σ−2
xxΣxz)

′.

Notice that, in constrast to the FRB, the asymptotic variance of T ∗
n fails to replicate that

of Tn because of the term κ2 > 0. This implies that the methodology developed in Theorem 3.1

and its corollaries no longer applies. Instead we can apply the theory of Section 3.5, which

demonstrates that the double bootstrap p-values are asymptotically uniformly distributed.

4.4 Inference based on ridge estimators

Setup. Consider the linear regression model yt = θ′xt + εt, t = 1, . . . , n, where xt is a p × 1

non-stochastic vector and εt ∼ i.i.d.(0, σ2). Interest is in inference on a linear combination of

θ, such as the simple null hypothesis H0 : g′θ = r, based on ridge estimation of θ. Specifically,

a classic lasso-type/penalized least squares estimator of θ (or ‘bridge’, see Frank and Friedman,

1993) has the form θ̃
(η)
n := argminθ∈Rp{

∑n
t=1(yt− θ′xt)

2+ cn ∥θ∥ηη}, where ∥x∥η denotes the ℓη-

norm of the vector x. The tuning parameter cn controls the degree of shrinkage toward zero for

the estimator. For η = 2 we obtain the so-called ridge estimator, which we denote by θ̃n and

we discuss in the following; see Giglio and Xiu (2021) for a recent application to estimation of

asset pricing (factor) models. The ridge estimator has closed form expression

θ̃n = S̃−1
xx Sxy, (4.7)
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where S̃xx := Sxx+n−1cnIp. Clearly, cn = 0 corresponds to the OLS estimator, θ̂n. Notice also

that θ̃n can be written as θ̃n = Ωnθ̂n, where Ωn := S̃−1
xx Sxx is a weighting matrix which shrinks

the OLS estimator θ̂n towards zero. As in Knight and Fu (2000) we assume the following.

Assumption RE (i) εt ∼ i.i.d.(0, σ2); (ii) maxt=1,...,n x
′
txt = o(n); (iii) Sxx is nonsingular for

any n and converges to a positive definite matrix, Σxx; (iv) θ = δn−1/2; and (v) n−1cn → c0 ≥ 0.

The asymptotic properties of θ̃n depend crucially on the shrinkage parameter cn as well as

on the magnitude of the coefficient vector θ. In particular, rearranging (4.7) yields

n1/2(θ̃n − θ) = n1/2S̃−1
xx Sxε + bn,

where bn := −cnn
−1/2S̃−1

xx θ = E(n1/2(θ̃n − θ)) is a bias term. Note that bn can either converge

or diverge, depending on the magnitudes of cn and θ. We are interested in the case where

the regressors have limited explanatory power, i.e. where θ = δn−1/2 is local to zero as in

Assumption RE(iv). Indeed, this case can be taken as a motivation for shrinkage towards zero

and hence for ridge estimation. If, in addition, n−1cn → c0 ≥ 0 as in Assumption RE(v) (see

also Knight and Fu, 2000), then bn does not vanish as n → ∞ unless c0 = 0. Hence, for c0 > 0,

θ̃n is asymptotically biased and the bias term cannot be consistently estimated.

Consider a (test) stastistic for H0 of the form

Tn := n1/2(g′θ̃n − r).

It is not difficult to see that, under H0, Tn satisfies Assumption 1′ and, in particular,

Tn = n1/2g′(θ̃n − θ) = n1/2g′S̃−1
xx Sxε +Bn,

where Bn := g′bn = −cnn
−1/2g′S̃−1

xx θ. With Σ̃xx := Σxx + c0Ip, under Assumption RE and H0,

ξ1,n := Tn −Bn = n1/2g′S̃−1
xx Sxε

d→ ξ1 ∼ N(0, v2), (4.8)

where v2 := σ2g′Σ̃−1
xxΣxxΣ̃

−1
xx g. Hence, inference based on the quantiles of the N(0, v2) distri-

bution is invalid unless c0 = 0.

Bootstrap. Consider a pairs bootstrap sample {y∗t , x∗t } built by i.i.d. resampling of the tuples

{yt, xt; t = 1, . . . , n}. The bootstrap analogue of the ridge estimator is θ̃∗n := S̃−1
x∗x∗Sx∗y∗ , where

S̃x∗x∗ := Sx∗x∗ + n−1cnIp. With ε∗t := y∗t − θ̂′nx
∗
t , we consider the following bootstrap analogue

of the original test statistic,

T ∗
n := n1/2g′(θ̃∗n − θ̂n) = B∗

n + ξ∗1,n,

where

B∗
n := −cnn

−1/2g′S̃−1
x∗x∗ θ̂n and ξ∗1,n := n1/2g′S̃−1

x∗x∗Sx∗ε∗ . (4.9)

Note that T ∗
n is centered using θ̂n to guarantee that ε∗t and x∗t are uncorrelated in the bootstrap

world.

As we show next, the bootstrap fails to approximate the asymptotic distribution of Tn

(see also Chatterjee and Lahiri, 2010, 2011). The reason is that, although ξ∗1,n mimics ξ1,n
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(the stochastic part of Tn), B
∗
n does not approximate Bn in large samples. To determine the

distribution of the bootstrap p-value, we verify the high-level conditions in Section 3. We do

this through the following two lemmas, which are based on the fact that in large samples B∗
n is

close to its non-bootstrap analogue, B̂n := −cnn
−1/2g′S̃−1

xx θ̂n.

Lemma 4.9 Under Assumption RE and the null hypothesis H0 : g
′θ = r it holds that(

Tn −Bn

B̂n −Bn

)
=

(
g′S̃−1

xx

−cnn
−1g′S̃−1

xx S
−1
xx

)
n1/2Sxε

d→

(
ξ1

ξ2

)
∼ N(0, V ), V = (vij), (4.10)

with v11 = v2 as defined above, v12 = −c0g
′Σ̃−1

xx Σ̃
−1
xx g, and v22 = c20g

′Σ̃−1
xxΣ

−1
xx Σ̃

−1
xx g.

Lemma 4.10 Under Assumption RE and the null hypothesis H0 : g′θ = r, and assuming also

Eε4t < ∞ and maxt=1,...,n x
′
txt = o(n1/2), it holds that T ∗

n −B∗
n = T ∗

n − B̂n + o∗p(1)
d∗→ N(0, v2),

in probability.

Hence, we can rely on Corollary 3.4, which implies that the bootstrap p-value satisfies

p̂n
d→ Φ(mΦ−1(U[0,1])) (4.11)

with m2 given by

m2 =
g′Σ−1

xx g

g′Σ̃−1
xxΣxxΣ̃

−1
xx g

, (4.12)

see Appendix B.4. Notice that (4.11) holds irrespectively of θ being fixed or local to zero. Thus,

the bootstrap is invalid unless c0 = 0 which implies m = 1.

Remark 4.6 In the univariate case (where we set g = 1) it follows from (4.12) that

m = 1 + c0/Σxx ≥ 1,

with equality holding only for c0 = 0. Hence, a left-sided test with nominal level α ∈ (0, 1/2)

that rejects when p̂n ≤ α is over-sized. Specifically, its asymptotic size follows from (4.11) and

is given by

P (p̂n ≤ α) → P (Φ(mΦ−1(U[0,1])) ≤ α) = Φ(Φ−1(α) Σxx
Σxx+c0

),

which is greater than α unless c0 = 0.

Remark 4.7 It is worth noting that the cdf of the ridge test statistic, conditionally on the data,

is random in the limit, see Remark 3.3, unless c0 = 0 (i.e., cn = o(n)). Specifically, using the

fact that B̂n − Bn
d→ ξ2 and Bn → B := −c0g

′Σ̃xxδ, the distribution of T ∗
n , conditionally on

the data, converges (weakly) to the distribution of ξ∗1 + ξ2 + B conditionally on ξ2, where ξ∗1 is

distributed as ξ1 and is independent of ξ2. That is, P ∗(T ∗
n ≤ u) →w Φ((u− ξ2 −B)/v).

Remark 4.8 The use of the pairs bootstrap (which implicitly sets θ̂n as true parameter under

the bootstrap probability measure) guarantees that B̂n − Bn is centered around zero as n → ∞,

as required in Assumption 2′.

33



Restoring bootstrap validity. Post-ridge estimation valid inference can be performed

using either the plug-in approach or the double bootstrap. For the plug-in method, a simple

consistent estimator of m is given by

m̂n :=

√
g′S−1

xx g

g′S̃−1
xx SxxS̃

−1
xx g

.

Inference based on the plug-in modified p-value,

p̃n = Ĥn(p̂n) = Φ(Φ−1(p̂n)/m̂n),

is then asymptotically valid by Corollary 3.2.

To implement the double bootstrap, it suffices to construct the double bootstrap sample

mimicking the first-level bootstrap scheme. That is, we can draw the double bootstrap sample

{y∗∗t , x∗∗t ; t = 1, . . . , n} as i.i.d. from {y∗t , x∗t ; t = 1, . . . , n}. Accordingly, the second-level boot-

strap ridge estimator is θ̃∗∗n := S̃−1
x∗∗x∗∗Sx∗∗y∗∗ with associated test statistic

T ∗∗
n := n1/2g′(θ̃∗∗n − θ̂∗n),

which is centered at the first-level bootstrap OLS estimator, θ̂∗n. It is straightforward to show

that, without additional assumptions, prepivoting based on the double bootstrap provides valid

inference. In particular, the following lemma verifies Assumption 3′ and validity of the double

bootstrap modified p-value follows by application of Theorem 3.2.

Lemma 4.11 Under the assumptions of Lemma 4.10, it holds that (i) T ∗∗
n − B̂∗

n
d∗∗→p∗ N(0, v2),

in probability, with B̂∗
n := −cnn

−1/2g′S̃−1
x∗x∗ θ̂∗n, and (ii)(

T ∗
n − B̂n

B̂∗
n − B̂n

)
d∗→p N(0, V ),

where B̂n and V are defined in (4.9) and (4.10), respectively.

4.5 Nonlinear dynamic panel data models with incidental parameter bias

Another example that fits our framework is inference based on panel data estimators subject

to incidental parameter bias. We consider the properties of the cross-sectional pairs bootstrap

considered by Kaffo (2014), Dhaene and Jochmans (2015), and Gonçalves and Kaffo (2015) in

the context of a general nonlinear panel data model. Although this bootstrap cannot replicate

the bias, we show that our prepivoting approach based on a plug-in estimator of the bias is valid.

Recently, Higgins and Jochmans (2022) proposed a (double) bootstrap procedure that retains

asymptotic validity without an explicit plug-in estimator of the bias, but their procedure relies

heavily on the parametric distribution assumption.

Setup. Let zit denote a vector of random variables for a set of n individuals, i = 1, . . . , n, over

T time periods, t = 1, . . . , T . Given a model for the density function fit(θ, αi) := f(zit, θ, αi),

the parameter of interest is θ ∈ Θ, which is common to all the individuals, while αi ∈ A denote

the individual fixed effects. The fixed effects estimator of θ is the maximum likelihood estimator
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(MLE) defined as

θ̂n = argmax
θ∈Θ

n∑
i=1

T∑
t=1

log fit(θ, α̂i(θ)), where α̂i(θ) = arg max
αi∈A

T∑
t=1

log fit(θ, αi). (4.13)

Under certain regularity conditions (see, e.g., Hahn and Kuersteiner, 2011), including letting

n, T → ∞ jointly such that n/T → ρ < ∞,

Tn :=
√
nT (θ̂n − θ)

d→ N(B, v2), (4.14)

where B denotes the incidental parameter bias and v2 is the asymptotic variance of θ̂n. Hence,

Assumption 1 is satisfied with ξ1 := N(0, v2) (equivalently, Assumption 1′ is satisfied).

The exact forms of B and v2 may be quite involved and depend on the type of heterogene-

ity and dependence assumptions imposed on zit. A standard assumption is that zit is indepen-

dent across i while allowing for time series dependence of unknown form; see Hahn and Kuer-

steiner (2011).

Bootstrap. Given the cross sectional independence assumption, a natural bootstrap method

in this context is the cross sectional pairs bootstrap. The idea is to resample zi = (zi1, . . . , ziT )
′

in an i.i.d. fashion in the cross sectional dimension. If zit = (yit, xit)
′ and f(zit, θ, αi) =

f(yit|xit, θ, αi) is the conditional density of yit given xit, this is equivalent to a cross sectional

pairs bootstrap. As the results of Kaffo (2014, Theorem 3.1) show, this bootstrap fails to cap-

ture the bias term B. In particular, letting θ̂∗n denote the bootstrap analogue of θ̂n, we have that

T ∗
n :=

√
nT (θ̂∗n − θ̂n)

d∗→p N(0, v2),

which implies that6

p̂n := P ∗(T ∗
n ≤ Tn) = Φ(v−1Tn) + op(1)

d→ Φ(v−1B +Φ−1(U[0,1])).

Thus,

P (p̂n ≤ u) → H(u) := P (Φ(Φ−1(U[0,1]) + v−1B) ≤ u) = Φ(Φ−1(u)− v−1B),

which shows that the bootstrap test based on p̂n is asymptotically invalid since its limiting

distribution is not uniform.

Remark 4.9 Note that, in this example, L̂n(u) := P ∗(T ∗
n ≤ u) →p Φ(u/v), showing that the

bootstrap conditional distribution of T ∗
n is not random in the limit. The invalidity of p̂n is due

to the fact that the cross sectional pairs bootstrap induces B̂n = 0, whereas B ̸= 0. This implies

that B̂n−B = −B := ξ2 is not random. The fact that ξ2 is not zero is the cause of the bootstrap

invalidity. See Remark 3.1, which contains this example as a special case.

Contrary to previous examples (see, e.g., Remarks 4.1 and 4.3), B and v can both be con-

sistently estimated. Hence, in this example we can restore bootstrap validity by modifying the

6Note that this result can also be obtained by an application of Theorem 3.1 by setting ξ1 ∼ N(0, v2), ξ2 = −B
a.s., Gγ(u) = Φ(v−1u), and Fϕ(u) = P (ξ1 − ξ2 ≤ u) = Φ(v−1u − v−1B). Although Assumption 2′(ii) is not
satisfied here, because it requires B̂n−B to be asymptotically centered at zero, we can still appeal to Theorem 3.1
since Assumptions 1 and 2 hold.
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bootstrap p-value using a plug-in approach. More specifically, let B̃n and v̂n denote consistent

estimators of B and v, respectively.7 By Corollary 3.2,

p̃n = Ĥn(p̂n) = Φ(Φ−1(p̂n)− v̂−1
n B̂n)

d→ U[0,1],

where Ĥn(u) := Φ(Φ−1(u)− v̂−1
n B̂n) is a consistent estimator of H(u).

Remark 4.10 A double bootstrap modified p-value version of p̃n is not valid in this setting.

The reason is that the double bootstrap mimics the behavior of the first-level bootstrap, i.e.

T ∗∗
n :=

√
nT (θ̂∗∗n − θ̂∗n)

d∗∗→p N(0, v2),

so that B̂∗
n in Assumption 3(i) is zero. Since B̂n = 0, Assumption 3(ii) holds with B̂∗

n− B̂n = 0,

whereas Assumption 2(ii) has B̂n −Bn = −B. Then,

p̂∗n = P ∗∗(v−1T ∗∗
n ≤ v−1T ∗

n) = Φ(v−1T ∗
n)

d∗→p Φ(Φ
−1(U[0,1])) = U[0,1],

whereas

p̂n
d→ Φ(Φ−1(U[0,1]) + v−1B).

Thus, Ĥn(u) := P ∗(p̂∗n ≤ u) is not a consistent estimator of H(u), invalidating p̃n = Ĥn(p̂n).

Remark 4.11 A special case of the previous setup is a linear panel dynamic model, where

zit = (yit, x
′
it)

′ and xit is a vector containing lags of yit (Hahn and Kuersteiner, 2002). In

this case, the plug-in modified p-value, p̃n, based on the cross sectional pairs bootstrap can be

implemented using any consistent estimator of B, as described above. However, we can also

use a recursive bootstrap that exploits the linearity of the model to obtain an asymptotically

valid standard bootstrap p-value, p̂n. The validity of p̂n follows from the fact that the recursive

bootstrap estimates B consistently, contrary to the pairs bootstrap (Gonçalves and Kaffo, 2015).

In light of this, prepivoting p̂n by computing a double bootstrap modified p-value p̃n = Ĥn(p̂n) is

not needed in this example, but it is still a valid alternative.

5 Concluding remarks

Estimators with (asymptotic) bias arise in all areas of economics and statistics. Inference is

challenging because the bias typically cannot be estimated.

In this paper, we have shown that in statistical problems involving bias terms that cannot

be estimated, the bootstrap can be modified to provide asymptotically valid inferences. Our

solution is simple and involves (i) focusing on the bootstrap p-value; (ii) estimating its asymp-

totic distribution; (iii) mapping the original (invalid) p-value into a new (valid) p-value using

the prepivoting approach. These steps are easy to implement in practice and we provide suffi-

cient conditions for asymptotic validity of the associated tests and confidence intervals.

Our results can be generalized in several directions. For instance, there is a growing literature

where inference on a parameter of interest is combined with some auxiliary information in the

7Since we reserve the notation B̂n for the bootstrap-induced bias estimator (which is zero for the cross sectional
pairs bootstrap), we use the notation B̃n to denote any consistent estimator of B in this setup. For instance,
B̃n could be the plug-in estimator proposed by Hahn and Kuersteiner (2011), which is based on a closed-form
expression of B1. Another option is the half-split panel jackknife estimator of Dhaene and Jochmans (2015).
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form of a bound on the bias of the estimator in question. These bounds appear, e.g., in Oster

(2019) and Li and Müller (2021). It is of interest to investigate how our analysis can be extended

in order to incorporate such bounds. Other possible extensions include non-ergodic problems,

large-dimensional models, and multivariate estimators or statistics. All these extensions are left

for future research.

Appendix

A Proofs of main results

Proof of Theorem 3.1. First notice that p̂n and Gγ(Tn − B̂n) have the same asymptotic

distribution because Assumption 2(i) and continuity of Gγ imply that

|p̂n −Gγ(Tn − B̂n)| ≤ sup
u∈R

|P ∗(T ∗
n − B̂n ≤ u)−Gγ(u)|

p→ 0.

Next, by Assumption 2(ii), Tn − B̂n →d ξ1 − ξ2, such that

Gγ(Tn − B̂n)
d→ Gγ(ξ1 − ξ2)

by the continuous mapping theorem using continuity of Gγ . Since ξ1 − ξ2 has continuous cdf

Fϕ, it holds that ξ1 − ξ2 ∼ F−1
ϕ (U[0,1]), which completes the proof.

Proof of Theorem 3.2. To prove this result, recall that Ĥn(u) = P ∗(p̂∗n ≤ u) and Hn(u) =

P (p̂n ≤ u), where Hn(u) → H(u) = Fϕ(G
−1
γ (u)) uniformly in u ∈ R, since H is a continuous

distribution function by Assumptions 1 and 2. We have that

p̂∗n = P ∗∗(T ∗∗
n ≤ T ∗

n) = P ∗∗(T ∗∗
n − B̂∗

n ≤ T ∗
n − B̂∗

n)

= Gγ(T
∗
n − B̂∗

n) + op∗(1), by Assumption 3(i),

= Gγ(F
−1
ϕ (U[0,1])) + op∗(1), by Assumption 3(ii),

where Gγ(F
−1
ϕ (U[0,1])) is a random variable whose distribution function is H(u). Hence,

sup
u∈R

∣∣∣Ĥn(u)−H(u)
∣∣∣ = op(1).

Since H(p̂n) →d U[0,1], we can conclude that p̃n = Ĥn(p̂n) →d U[0,1].

B Additional proofs

B.1 Proof of results from Section 2

Derivation of v21,n. It suffices to note that Tn −Bn satisfies

Tn−Bn = (1−ω)S−1
xx , ωS

−1
xx.z)n

1/2

(
Sxε

Sxε.z

)
∼ ((1−ω)S−1

xx , ωS
−1
xx.z)N

(
0,

(
Sxx Sxx.z

Sxx.z Sxx.z

))
,

which implies that v21,n = ω2S−1
xx.z + (1− ω2)S−1

xx , which can be written as

v21,n =
1

Sxx

1− (1− ω2)ρ̂2xz
1− ρ̂2xz

=
1

Sxx

(
1 + ω2 ρ̂2xz

1− ρ̂2xz

)
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with ρ̂xz = S
−1/2
xx SxzS

−1/2
zz .

Derivation of v22,n. Noting that B̂n −Bn = (1− ω)S−1
xx SxzS

−1
zz.xn

1/2Szε.x, we obtain

v22,n = V (B̂n −Bn) = (1− ω)2S−2
xx S

2
xzS

−1
zz.x = (1− ω)2S−1

xx

ρ̂2xz
1− ρ̂2xz

.

Derivation of v2d,n and mn. First, notice that v2d,n = v21,n + v22,n − 2v12,n, where v12,n =

Cov(Tn −Bn, B̂n −Bn). The latter term is given by

v12,n = Cov((1− ω)S−1
xx n

1/2Sxε + ωS−1
xx.zn

1/2Sxε.z, (1− ω)S−1
xx SxzS

−1
zz.xn

1/2Szε.x)

= E((1− ω)2S−1
xx Sxεn

1/2S−1
xx SxzS

−1
zz.xn

1/2Szε.x) + E(ω(1− ω)S−1
xx.zn

1/2Sxε.zS
−1
xx SxzS

−1
zz.xn

1/2Szε.x)

= ω (1− ω)S−1
xx.zS

−1
xx S

2
xzS

−1
zz.x

(
ρ2xz − 1

)
,

where we used the facts that E(SxεSzε.x) = 0 and E(nSxε.zSzε.x) = Sxz(ρ
2
xz − 1). Because

S−1
xx.zS

−1
xx S

2
xzS

−1
zz.x =

S2
xz

Sxx(Szz − S2
zxS

−1
xx )(Sxx − S2

zxS
−1
zz )

=
ρ2zx

Sxx(1− ρ2zx)
2
,

we have v12,n = −ω(1− ω)S−1
xx ρ

2
zx(1− ρ2zx)

−1, and it then follows that

v2d,n = v21,n + v22,n − 2v12,n =
1

Sxx

(
1 + ω2 ρ̂2xz

1− ρ̂2xz

)
+ (1− ω)2

1

Sxx

ρ̂2xz
1− ρ̂2xz

+ 2ω(1− ω)
ρ2zx

Sxx(1− ρ2zx)

=
1

Sxx

1

1− ρ̂2xz
(1− ρ̂2xz + ω2ρ̂2xz + (1− ω)2ρ̂2xz + 2ω(1− ω)ρ2zx) =

1

Sxx

1

1− ρ̂2xz
.

Finally,

m2
n = v2d,n/v

2
1,n =

1

Sxx

1

1− ρ̂2xz

(
S−1
xx

(
1 + ω2 ρ̂2xz

1− ρ̂2xz

))−1

=
1

1− ρ̂2xz

(
1− ρ̂2xz + ω2ρ̂2xz

1− ρ̂2xz

)−1

=

(
1

1− (1− ω2)ρ̂2xz

)
.

B.2 Proofs of the results in Section 4.2

Proof of Lemma 4.1. Under H0 and our normalization conditions on the regressors,

n1/2Sxy = n1/2SxZδ + n1/2Sxε = SxZc+ n1/2Sxε

since δ = n−1/2c. Hence,

Tn =
n1/2Sxy

σ̃n
= σ̃−1

n SxZc+ σ̃−1
n n1/2Sxε,

so the result follows by Assumption OC if we can show that

σ̃2
n := n−1ε̃′ε̃ →p σ

2. (B.1)

To prove (B.1) we write ε̃ = y −Wb̃n = ε−W (b̃n − b), which implies that

σ̃2
n = n−1ε′ε+ SεW (b− b̃n) + (b− b̃n)

′SWε + (b− b̃n)
′SWW (b− b̃n).
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Under Assumption OC it holds that n−1ε′ε →p σ2, SWε = Op(n
−1/2), and SWW = Op(1).

Thus, (B.1) follows if b̃n − b = op(1). To see that b̃n − b = op(1), note that

b̃n = b̂n − ∆̂n,

where ∆̂n := Anδ̂n and An := (−S′
xZ , 0, Ip)

′. Under Assumption OC, b̂n →p b and ∆̂n →p ∆ :=

(−ΣxZδ, 0
′, δ′)′ = O(n−1/2) because δ = O(n−1/2). Thus, b̃n →p b, which proves (B.1).

Proof of Lemma 4.2. Proof of (i). Because

β̃∗
n = S−1

xx.QSxy∗.Q = Sxy∗.Q = β̂n + SxZ δ̂n + Sxε∗ ,

we can write

T ∗
n := (β̃∗

n − β̂n)/s
∗(β̃∗

n) = (β̃∗
n − β̂n)/σ̃

∗
n = SxZ σ̃

∗−1
n n1/2δ̂n + σ̃∗−1

n n1/2Sxε∗ ,

and the result follows by proving that (a) n1/2Sxε∗
d∗→p N(0, σ2) and (b) σ̃∗2

n
p∗→p σ

2.

Proof of (a). By construction ε∗|Dn ∼ N(0, σ̂2
nIn) and n1/2Sxε∗ |Dn ∼ N(0, σ̂2

n). The result

follows because σ̂2
n →p σ

2 (as in Lemma 4.1). Note that we could have used ε∗|Dn ∼ N(0, σ̃2
nIn)

since σ̃2
n →p σ

2 by (B.1).

Proof of (b). We write

ε̃∗ = y∗ −Wb̃∗n = ε∗ −W (b̃∗n − b̂n),

where b̃∗n := (β̃∗
n, η̃

∗′
n , 0

′)′, implying that

σ̃∗2
n := n−1ε̃∗′ε̃∗ = n−1ε∗′ε∗ + Sε∗W (b̂n − b̃∗n) + (b̂n − b̃∗n)

′SWε∗ + (b̂n − b̃∗n)
′SWW (b̂n − b̃∗n). (B.2)

Here, n−1ε∗′ε∗
p∗→p σ2 because E∗(n−1ε∗′ε∗) = σ̃2

n →p σ2 and Var∗(n−1ε∗′ε∗) = n−12σ̃4
n →p 0.

The result then follows by showing that the remaining terms on the right-hand side of (B.2) are

op∗(1), in probability. First, note that Sε∗W = Op∗(n
−1/2), in probability, by part (a), whereas

SWW = Op(1) by Assumption OC. Thus, part (b) follows by showing that b̂n − b̃∗n = op∗(1), in

probability. To show this, we write

b̃∗n = b̂∗n − ∆̂∗
n,

where ∆̂∗
n := Anδ̂

∗
n with An := (−S′

xZ , 0, Ip)
′. Letting ∆̂n := Anδ̂n, as in the proof of Lemma 4.1,

yields

b̃∗n − b̂n = (b̂∗n − b̂n) + (∆̂∗
n − ∆̂n)− ∆̂n.

Under Assumption OC,

b̂∗n − b̂n = S−1
WWSWε∗ = op∗(1), in probability,

∆̂∗
n − ∆̂n = An(δ̂

∗
n − δ̂n) = op∗(1), in probability, and

∆̂n = Anδ +An(δ̂n − δ) = Op(n
−1/2) = op(1),

since δ = O(n−1/2), which shows that b̂n − b̃∗n = op∗(1), in probability.
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Proof of (ii). Note that we can write(
Tn −B

B̂n −B

)
= σ−1

(
n1/2Sxε

ΣxZn
1/2(δ̂n − δ)

)
+ op(1),

where

n1/2(δ̂n − δ) = S−1
ZZ.xn

1/2SZε.x = S−1
ZZ.x(n

1/2SZε − SZxn
1/2Sxε).

By Assumption OC, it follows that

n1/2(δ̂n − δ) = Σ−1
ZZ.x(n

1/2SZε − ΣZxn
1/2Sxε) + op(1),

which implies that(
Tn −B

B̂n −B

)
=

(
1 0

−ΣxZΣ
−1
ZZ.xΣZx ΣxZΣ

−1
ZZ.x

)(
σ−1n1/2Sxε

σ−1n1/2SZε

)
+ op(1).

The result then follows by direct application of Assumption OC.

Proof of Lemma 4.3. This result follows by arguments similar to those used in the proof of

Lemma 4.2.

Proof of (i). We write

T ∗∗
n := (β̃∗∗

n − β̂∗
n)/s(β̃

∗∗
n ) = SxZ σ̃

∗∗−1
n n1/2δ̂∗n + σ̃∗∗−1

n n1/2Sxε∗∗ ,

using the facts that β̃∗∗
n − β̂∗

n = SxZ δ̂
∗
n + Sxε∗∗ and s2(β̃∗∗

n ) = n−1σ̃∗∗2
n . We then show that

(a) n1/2Sxε∗∗
d∗∗→p∗ N

(
0, σ2

)
and (b) σ̃∗∗2

n
p∗∗→p∗ σ2, both in probability. Proof of (a): By

construction, n1/2Sxε∗∗ |{D∗
n, Dn} ∼ N(0, σ̃∗2

n ), and the result follows because σ̃∗2
n

p∗→p σ2 as

shown in Lemma 4.2. Proof of (b): As in the proof of Lemma 4.2, we can write

σ̃∗∗2
n = n−1ε∗∗′ε∗∗ + Sε∗∗W (b̂∗n − b̃∗∗n ) + (b̂∗n − b̃∗∗n )′SWε∗∗ + (b̂∗n − b̃∗∗n )′SWW (b̂∗n − b̃∗∗n ). (B.3)

Here it holds that n−1ε∗∗′ε∗∗
p∗∗→p∗ σ2, in probability, since E∗∗(n−1ε∗∗′ε∗∗) = σ̃∗2

n
p∗→p σ2 and

Var∗∗(n−1ε∗∗′ε∗∗) = n−12σ̃∗4
n

p∗→p 0. The result then follows by showing that the remaining

terms in (B.3) are op∗∗(1). First, note that SWε∗∗ = Op∗∗(n
−1/2), in probability, by part (a)

and SWW = Op((1) by Assumption OC. Second, note that b̂∗n− b̃∗∗n = op∗∗(1), in probability, by

completely analogous arguments to those in the proof of Lemma 4.2.

Proof of (ii). We write(
T ∗
n − B̂n

B̂∗
n − B̂n

)
= σ̃−1

n

(
n1/2Sxε∗

SxZn
1/2(δ̂∗n − δ̂n)

)
+ op∗(1),

in probability, where

n1/2(δ̂∗n − δ̂n) = S−1
ZZ.xn

1/2SZε∗.x = S−1
ZZ.x(n

1/2SZε∗ − SZxn
1/2Sxε∗).

This implies that(
T ∗
n − B̂n

B̂∗
n − B̂n

)
=

(
1 0

−SxZS
−1
ZZ.xΣZx SxZS

−1
ZZ.x

)(
σ̃−1
n n1/2Sxε∗

σ̃−1
n n1/2SZε∗

)
+ op∗(1),
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in probability. Since ε∗|Dn ∼ N(0, σ̂2
n), we have that

σ̂−1
n

(
n1/2Sxε∗

n1/2SZε∗

)
|Dn ∼ N(0, Ω̂n), Ω̂n :=

(
1 SxZ

SZx Ip

)
.

The result then follows by Assumption OC.

B.3 Proofs of the results in Section 4.3

Proof of Lemma 4.4. To show that Yn := n1/2Anε →d N(0, v2), notice that

Sxε.Zm = x′MZmε = n−1(x′ε− x′Zm(Z ′
mZm)−1R′

mZ ′ε)

= ([1, SxZm(SZmZm)
−1R′

m)SWε =: d̂′mSWε,

where, under the stated assumptions,

d̄M,n :=
M∑

m=1

ωmS−1
xx.Zm

d̂m →p d̄M :=
M∑

m=1

ωmΣ−1
xx.Zm

dm. (B.4)

Hence,

Yn =
M∑

m=1

ωmS−1
xx.Zm

d̂′mn1/2SWε = d̄′M,n(n
1/2SWε)

d→ N(0, v2) (B.5)

with v2 := d̄′MΩd̄M .

Proof of Lemma 4.5. The first statement of the lemma follows straightforwardly using

previous arguments. Next, note that

n1/2(δ̂n − δ) = S−1
ZZ.xSZε.x = S−1

ZZ.x(−SZxS
−1
xx , Iq)n

1/2SWε,

from which it follows that

B̂n −Bn = AnZn1/2(δ̂n − δ) = AnZS−1
ZZ.x(−SZxS

−1
xx , Iq)n

1/2SWε

=
M∑

m=1

ωmS−1
xx.Zm

SxZ.ZmS
−1
ZZ.x(−SZxS

−1
xx , Iq)n

1/2SWε =: b̄′M,nn
1/2SWε,

where b̄M,n satisfies

b̄′M,n →p b̄
′
M :=

M∑
m=1

ωmΣ−1
xx.Zm

ΣxZ.ZmΣ
−1
ZZ.x(−ΣZxΣ

−1
xx , Iq).

Hence, using (B.5),(
Tn −Bn

B̂n −Bn

)
=

(
d̄′M,n

b̄′M,n

)
n−1/2W ′ε

d→ N(0, V ),

V =

(
d̄′MΩd̄M d̄′MΩb̄M

b̄′MΩd̄M b̄′MΩb̄M

)
=:

(
v11 v12

v21 v22

)
,
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where v11 = v2, v12 = v21 = d̄′MΩb̄M , and

v22 := b̄′MΩb̄M =

(
M∑

m=1

ωmΣ−1
xx.Zm

ΣxZ.Zm

)
Σ−1
ZZ.x

(
M∑

m=1

ωmΣ−1
xx.Zm

ΣxZ.Zm

)′

.

Proof of Lemma 4.6. First note that we can write β̃∗∗
n = Any

∗∗, which implies that

β̃∗∗
n = Anxβ̂

∗
n +AnZδ̂∗n +Anε

∗∗.

It follows that

T ∗∗
n := n1/2(β̃∗∗

n − β̂∗
n) = B̂∗

n + n1/2Anε
∗∗,

where B̂∗
n := n1/2AnZδ̂∗n and

Y ∗∗
n := n1/2Anε

∗∗ =

M∑
m=1

ωmS−1
xx.Zm

n1/2Sxε∗∗.Zm

=
M∑

m=1

ωmS−1
xx.Zm

d̂′mn1/2SWε∗∗ = d̄′M,nn
1/2SWε∗∗ .

Since ε∗∗|{Dn, D
∗
n} ∼ N(0, σ̂∗2

n In), we have that

Y ∗∗
n |{Dn, D

∗
n} ∼ N(0, v̂∗2n ) or v̂∗−1

n Y ∗∗
n |{Dn, D

∗
n} ∼ N(0, 1),

where

v̂∗2n = d̄′M,n(Var
∗(n1/2SWε∗∗))d̄M,n = d̄′M,n(σ̂

∗2
n SWW )d̄M,n.

Under our assumptions, σ̂∗2
n

p∗→p σ2, SWW →p ΣWW , and d̄M,n →p dM . This implies that

v̂∗2n
p∗→p v

2, and hence

Y ∗∗
n = (v + v̂∗n − v)v̂∗−1

n Y ∗∗
n = vv̂∗−1

n Y ∗∗
n + (v̂∗n − v)v̂∗−1

n Y ∗∗
n

= vv̂∗−1
n Y ∗∗

n + op∗∗(1)
d∗∗→p∗ N(0, v2),

in probability. This proves that T ∗∗
n −B̂∗

n
d∗∗→p∗ N(0, v2), in probability. For the joint convergence

of (T ∗
n − B̂∗

n, B̂
∗
n − B̂n)

′, we write

n1/2(δ̂∗n − δ̂n) = S−1
ZZ.xSZε∗.x = S−1

ZZ.x(−SZxS
−1
xx , Iq)n

1/2SWε∗ ,

from which it follows that(
T ∗
n − B̂n

B̂∗
n − B̂n

)
=

(
d̄′M,n

b̄′M,n

)
n1/2SWε∗ |{Dn, D

∗
n} ∼ N(0, V̂n)

since n1/2SWε∗ |{Dn, D
∗
n} ∼ N(0, Ω̂n). Here, Ω̂n := σ̂2

nSWW because ε∗|{Dn, D
∗
n} ∼ N(0, σ̂2

nIn).

This implies that

V̂n =

(
d̄′M,nΩ̂nd̄M,n d̄′M,nΩ̂nb̄M,n

b̄′M,nΩ̂nd̄M,n b̄′M Ω̂nb̄M,n

)
=:

(
v̂11,n v̂12,n

v̂21,n v̂22,n

)

is such that V̂n →p V , from which the desired result follows.
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Proof of Lemma 4.8. We first prove that

SW ∗W ∗ − SWW
p∗→p 0, (B.6)

S∗
n :=

 n1/2Sx∗ε∗

n1/2(Sx∗z∗ − Sxz)

n1/2(Sx∗x∗ − Sxx)

 d∗→p N(0,ΣS), ΣS =

(
σ2Σxx 0

0 Σr

)
. (B.7)

Here, (B.6) follows by straightforward application of Chebyshev’s LLN.

To prove (B.7), we first compute the mean and variance of S∗
n. Note that the mean of S∗

n is

zero by construction; for example, E∗(n1/2Sx∗ε∗) = n−1/2
∑n

t=1E
∗(x∗t ε

∗
t ) = n1/2Sxε̂ = 0 by the

OLS first-order condition. In addition,

Var∗(n1/2Sx∗ε∗) = n−1
n∑

t=1

E∗(x∗2t ε∗2t ) = n−1
n∑

t=1

x2t ε̂
2
t

p→ σ2Σxx

under Assumptions MA and MA2. Similarly, letting(
n1/2(Sx∗z∗ − Sxz)

n1/2(Sx∗x∗ − Sxx)

)
= n1/2(Sx∗W ∗ − SxW ),

we find that

Var∗(n1/2 (Sx∗W ∗ − SxW )) = n−1
n∑

t=1

(xtwt − E∗(x∗tw
∗
t ))(xtwt − E∗(x∗tw

∗
t ))

′

= n−1
n∑

t=1

x2twtw
′
t − SxWSWx

p→ Σr − ΣxWΣWx.

Note also that the covariance between n1/2Sx∗ε∗ and n1/2(Sx∗W ∗ − SxW ) is zero because

E∗(nSx∗ε∗Sx∗W ∗) = n−1E∗

(
n∑

t=1

x∗t ε
∗
t

n∑
s=1

x∗sw
∗
s

)
= n−1E∗

(
n∑

t=1

x∗2t w∗
t ε

∗
t

)

= E∗(x∗2t w∗
t ε

∗
t ) = n−1

n∑
t=1

x2twtε̂t
p→ 0

by Assumption MA2(ii). Thus, we have shown that E∗(S∗
n) = 0 and E∗(S∗

nS
∗′
n ) →p ΣS . The

result (B.7) now follows because the stated moment conditions imply the Lindeberg condition

by standard arguments.

Next we can write

T ∗
n − B̂n = n1/2S−1

x∗x∗Sx∗ε∗ +B∗
n − B̂n,

where

B∗
n − B̂n = (S−1

x∗x∗Sx∗z∗ − S−1
xx Sxz)n

1/2δ̂n.

Adding and subtracting appropriately, we can write this difference as

B∗
n − B̂n = n1/2(S−1

x∗x∗Sx∗z∗ − S−1
xx Sxz)δ + (S−1

x∗x∗Sx∗z∗ − S−1
xx Sxz)n

1/2(δ̂n − δ),

where n1/2(δ̂n−δ) is Op(1) by a CLT and S−1
x∗x∗Sx∗z∗ −S−1

xx Sxz = o∗p(1), in probability, by (B.6).
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The first term in B∗
n − B̂n can be written as

S−1
x∗x∗n1/2(Sx∗z∗ − Sxz)δ − S−1

x∗x∗S−1
xx (Sx∗x∗ − Sxx)n

1/2Sxzδ

= δ(Σ−1
xx ,−Σ−2

xxΣxz)

(
n1/2(Sx∗z∗ − Sxz)

n1/2(Sx∗x∗ − Sxx)

)
+ o∗p(1),

in probability, by application of (B.6) and Assumption MA(ii). It follows that

T ∗
n − B̂n = S−1

x∗x∗n1/2S∗
xε + δ(Σ−1

xx ,−Σ−2
xxΣxz)

(
n1/2(Sx∗z∗ − Sxz)

n1/2(Sx∗x∗ − Sxx)

)
+ o∗p(1)

= (Σ−1
xx ,Σ

−1
xx δ,−Σ−2

xxΣxzδ)S
∗
n + o∗p(1),

in probability. The required result now follows from (B.7) because

(Σ−1
xx ,Σ

−1
xx δ,−Σ−2

xxΣxzδ)

(
Σs 0

0 Σr

)
(Σ−1

xx ,Σ
−1
xx δ,−Σ−2

xxΣxzδ)
′

= Σ−1
xxΣsΣ

−1
xx + dr(δ)

′Σrdr(δ) = v2 + κ2.

B.4 Proofs of the results in Section 4.4

Proof of Lemma 4.9 and derivation of (4.12). First notice that, since cnn
−1 → c0, under

Assumption RE we have that n1/2Sxε →d N(0, σ2Σxx) and hence(
Tn −Bn

B̂n −Bn

)
= (I2 ⊗ g′S̃−1

xx )

(
Im

−n−1cnS
−1
xx

)
n1/2Sxε

d→ (I2 ⊗ g′Σ̃−1
xx )N

(
0, σ2

(
Σxx −c0I

−c0I c20Σ
−1
xx

))

∼ N(0, V ), V = σ2

(
g′Σ̃−1

xxΣxxΣ̃
−1
xx g −c0g

′Σ̃−1
xx Σ̃

−1
xx g

−c0g
′Σ̃−1

xx Σ̃
−1
xx g c20g

′Σ̃−1
xxΣ

−1
xx Σ̃

−1
xx g

)
. (B.8)

This immediately implies that m2 = v11 + v22 − 2v12 is given by

m2 =
g′Σ̃−1

xxΣxxΣ̃
−1
xx g + 2c0g

′Σ̃−1
xx Σ̃

−1
xx g + c20g

′Σ̃−1
xxΣ

−1
xx Σ̃

−1
xx g

g′Σ̃−1
xxΣxxΣ̃

−1
xx g

. (B.9)

The numerator of m2 in (B.9) can be written as

g′Σ̃−1
xx (Σxx + 2c0Im + c20Σ

−1
xx )Σ̃

−1
xx g = g′Σ̃−1

xx (Σ̃xxΣ
−1
xx Σ̃xx)Σ̃

−1
xx g = g′Σ−1

xx g

and hence (4.12) follows.

Proof of Lemma 4.10. Note that T ∗
n − B̂n = ξ∗1,n +B∗

n − B̂n, where

B∗
n − B̂n = −cnn

−1/2g′S̃−1
x∗x∗ θ̂n + cnn

−1/2g′S̃−1
xx θ̂n

= −cnn
−1g′(S̃−1

x∗x∗ − S̃−1
xx )n

1/2(θ̂n − θ0)− cnn
−1g′(S̃−1

x∗x∗ − S̃−1
xx )δ = O∗

p(
∥∥∥S̃−1

x∗x∗ − S̃−1
xx

∥∥∥),
in probability, such that B∗

n−B̂n
p∗→p 0 if S̃−1

x∗x∗−S̃−1
xx

p∗→p 0. Because
∥∥∥S̃−1

xx

∥∥∥ = O(1), which holds

under the stated assumptions, it follows that
∥∥∥S̃−1

x∗x∗ − S̃−1
xx

∥∥∥ has the same rate as
∥∥∥S̃x∗x∗ − S̃xx

∥∥∥.
Thus, S̃x∗x∗ − S̃xx = Sx∗x∗ − Sxx = n−1

∑n
t=1(x

∗
tx

∗′
t − E∗(x∗tx

∗′
t ))

p∗→p 0 by a straightforward

application of Chebyshev’s LLN using that maxt x
′
txt = o(n1/2).
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The proof is completed by showing that ξ∗1,n satisfies the bootstrap CLT. By the above

results it holds that ξ∗1,n = n1/2g′Σ̃−1
xxSx∗ε∗+o∗p(1), in probability, so it is only required to analyze

the term n1/2g′Σ̃−1
xxSx∗ε∗ = n1/2Sx̃∗ε∗ , where x̃∗t := g′Σ̃−1

xxx
∗
t . First, we have E∗(n1/2Sx∗ε∗) =

n1/2Sxε̂ = 0. Second,

Var∗(n1/2Sx̃∗ε∗) = n−1
n∑

t=1

x̃2t ε̂
2
t = n−1

n∑
t=1

x̃2t (ε̂
2
t − σ2 + σ2)

= σ2g′Σ̃−1
xxΣxxΣ̃

−1
xx g + n−1

n∑
t=1

x̃2t (ε
2
t − σ2) + op(1).

Because εt is i.i.d. and x̃2t non-stochastic, a sufficient condition for n−1
∑n

t=1 x̃
2
t (ε

2
t − σ2) →p 0

is that λmin(
∑n

t=1 x̃
2
t ) → ∞, where λmin(·) denotes the minimum eigenvalue of the argument,

and this is implied by n−1
∑n

t=1 x̃
2
t → g′Σ̃−1

xxΣxxΣ̃
−1
xx g > 0.

Third, we check the Lindeberg’s condition, where we set s2n := nSxx. It holds that

1

s2n

n∑
t=1

E∗(x̃∗2t ε∗2t I{|x̃∗
t ε

∗
t |>ϵsn}) =

1

Sxx
E∗(x̃∗2t ε∗2t I{(x̃∗

t ε
∗
t )

2>ϵ2nSxx})

≤ 1

ϵ2nS2
xx

E∗(x̃∗4t ε∗4t )

=
1

ϵ2n2S2
xx

n∑
t=1

x̃4t ε̂
4
t ≤

n−1maxt x̃
4
t

ϵ2S2
xx

1

n

n∑
t=1

ε̂4t
p→ 0

because n−1maxt x̃
4
t = o(1) and εt has bounded fourth-order moment.

Proof of Lemma 4.11. The proof follows closely the proofs of Lemmas 4.9 and 4.10 and is

omitted for brevity.
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