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1 Introduction

In this paper, we develop tests of out-of-sample predictability in the presence of annual

benchmark revisions. The vast majority of the literature on out-of-sample tests of predictive

ability, including but not limited to those developed by Diebold and Mariano (1995), West

(1996), Clark and McCracken (2001), Corradi and Swanson (2007), and Giacomini and

Rossi (2010), ignores the potential for data revisions. An early counterexample is Clark and

McCracken (2009), who derive asymptotics for tests of equal predictive ability between linear

models evaluated under quadratic loss. To do so, they limit their analysis to the presence

of regular revisions in which a fixed, constant number of the most recent observations is

revised every period. More recently, Gonçalves, McCracken and Yao (2025) extend the work

of Clark and McCracken (2009) in two ways. First, they derive asymptotic results in a

broader framework that allows for more general classes of tests of predictive ability beyond

just equal accuracy under quadratic loss. Second, they propose a novel bootstrap approach

to inference for out-of-sample tests allowing for regular revisions.

Although Clark and McCracken (2009) and Gonçalves, McCracken and Yao (2025) inves-

tigate the role of data revisions on out-of-sample inference, they do not consider the effect of

irregular data revisions. This is a non-trivial and important issue since revisions are known

to be irregular. In particular, most macroeconomic series contain both regular and annual

benchmark revisions. For instance, each month, the Bureau of Labor Statistics (BLS) pro-

vides a regular release of nonfarm payroll data in the current employment statistics (CES)

report. This monthly report tabulates both the most recent change in payroll and the previ-

ous two months’ revised changes. Besides these regular monthly releases and revised payroll

data, each year the BLS also provides an additional revision to the payroll data that has

been released and revised in the past 12 months or more by using the latest Unemployment

Insurance tax numbers.

In this paper, we extend the results in Clark and McCracken (2009) and Gonçalves,

McCracken and Yao (2025) to a framework that includes both regular and annual benchmark

revisions. First, we adapt the results in West (1996) on out-of-sample tests of predictability

to a framework that allows for both regular and annual data revisions. Second, we show that

the test statistic proposed by Clark and McCracken (2009) to handle regular data revisions

is also valid in the presence of benchmark revisions. Third, we show that the bootstrap test

of Gonçalves, McCracken and Yao (2025) enjoys a similar robustness property.

Our new results build on a simple observation. When regular and annual benchmark

revisions are present, the moments of the testing functions change over time in a periodic
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fashion. When data revisions are not present, West (1996) assumes these functions are

covariance stationary. When only regular revisions are present, Clark and McCracken (2009)

and Gonçalves, McCracken and Yao (2025) also assume covariance stationarity. For these

latter two papers, the asymptotics follow the style of proof as in West (1996) but with

additional details that keep track of the degree of revision within any given vintage. When

annual benchmark revisions are present, this approach is no longer tenable.

To understand the issue, consider the following simple example. Suppose that we want

to test for zero mean prediction error using an AR(p) model. For concreteness, suppose that

the dependent variable is quarterly and exhibits one regular revision each quarter but, in the

third quarter, the preceding 4 quarters are fully revised. Let the one-step ahead forecast be

evaluated against the first release of the target variable. Whether the presence of the annual

revision changes the moment structure of the predictors depends on the lag structure of the

AR model. If p is 1, the predictor is always an initial release. If p is 2, the first predictor

is always a first release and the second predictor is always once revised. If p is 3, in the

first, second, and fourth quarters of the year, the first predictor is the first release while the

second and third predictors are once revised. But in the third quarter, the third predictor

is now fully revised. Insofar as the revision process changes the moments of the predictors,

this implies that the moments of the testing function change during a calendar year — in a

periodic fashion.

To cover both regular and annual revisions, we assume that the test function (and its

gradient) are periodically stationary rather than covariance stationary. Under additional

moment and mixing conditions, we are then able to establish asymptotic normality as in West

(1996). The asymptotic variance differs, however, because unconditional heteroskedasticity

is now present and the serial correlation structure is now significantly more complex. Despite

this, we show that the test statistic suggested in Clark and McCracken (2009) is robust to

the presence of annual benchmark revisions. There are two main reasons for this result.

First, the standard HAC estimator used to compute the long-run variance of the testing

function is still a consistent estimator under the null hypothesis despite the heterogeneity

implied by annual revisions (see, e.g., Gallant and White (1988) for the properties of HAC

estimators under heterogeneous weak dependence). Second, the contribution of parameter

estimation uncertainty to the asymptotic variance is now proportional to the time average of

the heterogeneous expectation of the gradient of the test function. Clark and McCracken’s

test statistic estimates this component by its sample analogue, which is still a consistent

estimator under mean heterogeneity of that gradient.
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A similar robustness property holds for the bootstrap approach of Gonçalves, McCracken

and Yao (2025). By resampling the vector of predictors available in each vintage (jointly with

the target dependent variable) using a block bootstrap, this method amounts to resampling

the sequence of real-time heterogeneous weakly dependent testing functions. We show that

this bootstrap is able to replicate the asymptotic variance of the test statistic under the

null hypothesis when the mean of the testing function is zero (a result that follows from

Gonçalves and White (2002)).

We provide Monte Carlo evidence on the finite sample efficacy of our analytical results. In

these experiments, we allow both regular and annual revisions with an eye towards data that

may be monthly or quarterly. This matters because quarterly series like consumption and real

GDP as well as monthly series like employment and industrial production exhibit each type

of revision. In the context of tests of zero mean prediction error (i.e., our earlier example) and

equal forecast accuracy under quadratic loss (which we focus on in our empirical analysis),

our simulations validate the robustness of the test statistic from Clark and McCracken (2009)

and the bootstrap developed in Gonçalves, McCracken and Yao (2025) by showing that they

can provide accurately sized and powerful tests in finite samples.

Finally, we apply our asymptotic and bootstrap results in the context of real-time fore-

casting of U.S. employment growth. We do so by considering the relative accuracy of a small

number of ARX models that augment a benchmark autoregressive model with a measure

of slack in the real economy: initial claims, total capacity utilization, or the vacancy rate.

Throughout, real-time vintage data is used for all series in order to capture the impact of

both regular and annual benchmark revisions. Overall, the benchmark autoregressive model

is nominally most accurate at both a shorter 3-month horizon and a longer 12-month hori-

zon. Nevertheless, both asymptotic- and bootstrap-based p-values indicate little statistical

difference across the models. The sole exception is the model augmented with the vacancy

rate advocated by Birinci et al. (2024) as a measure of labor market slack. This model is

significantly less accurate in real time. While speculative, this may be due to the fact that

it is released with a delay relative to the other predictors and hence its predictive content

may be stale.

Before proceeding, it is worth emphasizing that all of our results are built on the same

application of vintage data maintained in our previous work. We assume that at a given

forecast origin, the current vintage of the observables is exclusively used to form the forecast.

This implies that the parameter estimates are estimated using some data that have just been

released, some that have been revised at least once, and some that have been fully revised.
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Other methods have also been used in the literature. Koenig, Dolmas, and Piger (2003) and

Clements and Galvão (2013) estimate model parameters using observations from multiple

historical vintages with a shared level of revision. For example, one might only use the initial

release of a series to estimate model parameters. This implies using just one observation

each from the current and previous vintages — in contrast to our approach, which uses

many values from a single vintage. See Clements and Galvão (2019) for a discussion of the

trade-offs between using these two approaches.

The rest of the paper is organized as follows. Section 2 introduces the revision struc-

ture with annual revisions. Section 3 introduces the testing framework. Section 4 presents

the assumptions. Section 5 shows results for asymptotic inference. Section 6 presents the

bootstrap results. Section 7 presents Monte Carlo results. Section 8 applies our theoret-

ical results in the context of real-time forecasting of U.S. employment growth. Section 9

concludes. Appendices A and B contain proofs of the theoretical results whereas additional

simulation results are given in Appendix C.

2 Revision structure with annual revisions

The revision structure of this paper builds on Clark and McCracken (2009) and Gonçalves,

McCracken and Yao (2025). Similarly to their settings, at each forecast origin t = R, . . . , T ,

forecasts of a scalar target variable y are made using a finite dimensioned vector of predictors

x based on the current vintage of data {ys(t), xs(t) : s = 1, . . . , t}. The main difference is

that we allow for both regular and annual revisions. Take the target variable y as an example.

For each observation indexed by s, the first preliminary estimate of ys is subject to rmax − 1

revisions to reveal its final estimate. Hence, there are rmax versions of ys in total. We let

ys|i be the ith release of ys. When i = 1, ys|1 is the first release. When i = rmax, ys|i is the

final release, which we also write as ys. We use r − 1 to represent the number of regular

revisions needed on the first estimate of ys, i.e., ys|1, before ys|rmax = ys is revealed. In Clark

and McCracken (2009) and Gonçalves, McCracken and Yao (2025), ys|1 is subject to r − 1

regular revisions only. For this setting, we set rmax = r. When ys|1 is subject to regular and

annual revisions, we set rmax = r + rb − 1, where rb − 1 represents the number of annual

revisions needed on ys|1 before we obtain ys|rmax = ys. Throughout, for each first release ys|1,

we assume annual revisions will only take place once all the regular revisions are completed.

This means that among the total rmax − 1 revisions that are to be applied on ys|1, the first

r − 1 revisions are regular revisions, and the last rb − 1 revisions are annual revisions. In

other words, to update ys|1 to ys|r, ys|1 receives r − 1 regular revisions; to update ys|r to
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ys|rmax , ys|r receives rb − 1 annual revisions.

Regular revisions and annual revisions are learned with different frequencies. Regular

revisions are learned every period whereas annual revisions are learned every λ periods.

When λ = 1, annual revisions are structurally indistinguishable from regular revisions. If

data have quarterly frequency, λ = 4 implies that each year we have one annual revision. If

data are released with monthly frequency, one annual revision corresponds to λ = 12. For

instance, using our notations, we can describe nonfarm payroll data as monthly released,

annually revised real-time data with r − 1 = 2, rb − 1 ≥ 1, and λ = 12.

When data are subject to annual revisions, the preliminary observations in the annually

revised real-time data set do not resemble the pattern that appears in a data set with

regular revisions only. This is because annual revisions are learned every λ periods, and at

the time of annual revisions, each of the last r + (rb − 1)λ − 1 preliminary observations in

the previous vintage column receives one revision. This causes the preliminary observations

in the annually revised real-time data set to resemble a pattern of a string of flags.

Table 1: Structure of real-time data with no regular revisions (r− 1 = 0) and one annual revision
(rb − 1 = 1)

Vintage date (t)
tY tY+1 tY+2

Obs. s R R + 1 R + 2 R + 3 R + 4 R + 5 R + 6 R + 7 R + 8
1 y1 y1 y1 y1 y1 y1 y1 y1 y1
2 y2 y2 y2 y2 y2 y2 y2 y2 y2
...

...
...

...
...

...
...

...
...

...
R− 2 yR−2 yR−2 yR−2 yR−2 yR−2 yR−2 yR−2 yR−2 yR−2

R− 1 yR−1 yR−1 yR−1 yR−1 yR−1 yR−1 yR−1 yR−1 yR−1

R yR|1 yR|1 yR|1 yR|1 yR yR yR yR yR
R + 1 yR+1|1 yR+1|1 yR+1|1 yR+1 yR+1 yR+1 yR+1 yR+1

R + 2 yR+2|1 yR+2|1 yR+2 yR+2 yR+2 yR+2 yR+2

R + 3 yR+3|1 yR+3 yR+3 yR+3 yR+3 yR+3

R + 4 yR+4|1 yR+4|1 yR+4|1 yR+4|1 yR+4

R + 5 yR+5|1 yR+5|1 yR+5|1 yR+5

R + 6 yR+6|1 yR+6|1 yR+6

R + 7 yR+7|1 yR+7

R + 8 yR+8|1

Consider a simple example where quarterly released data do not contain any regular

revisions but are subject to a single annual revision. Table 1 illustrates this revision structure.

We use tY , tY+1, and tY+2 to represent dates where annual revisions take place, which in

the table correspond to t = R,R + 4, R + 8, respectively. As in the regular revisions case,

at each time period, a new preliminary observation is released (this corresponds to the main
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diagonal observations shaded in dark gray in the table). However, the time it takes for this

observation to be updated to a final value depends on how far we are from an annual revision

period. Take for instance t = R, an annual revision quarter. We observe a first released

value of yR, denoted by yR|1. This preliminary value is subject to a single revision which

will only take place at time t = R+ 4, the next annual revision quarter. Thus, each vintage

between t = R and t = R + 4 will contain yR|1 for observation s = R (these correspond

to the light gray observations in the table). Similarly, at time t = R + 1, the preliminary

observation yR+1|1 is released, and this will be updated to a final value yR+1 only at time

t = R + 4. If instead the single revision was regular, yR|1 and yR+1|1 would be updated to

final values in the next period t = R+1 and t = R+2, respectively, which would correspond

to having only preliminary observations in the dark gray positions in the table. The fact

that the revision is annual creates an additional number of preliminary observations in each

vintage, all those observations shaded in light gray.

Consider a more realistic example where data are subject to single regular revisions and

single annual revisions. Table 2 illustrates this revision structure. In this example, there are

rmax = r+rb−1 = 3 releases for each observation indexed by s. For instance, for observations

indexed by R, yR|1, yR|2, and yR are the first, second, and final release, respectively. To

update yR|1 to yR|2, yR|1 receives one regular revision at time R + 1. To update yR|2 to yR,

yR|2 receives one annual revision at time R+ 4. The observations in dark gray would be the

only preliminary observations in the table if there were no annual revisions. The latter add

the observations in light gray.
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Table 2: Structure of real-time data with one regular revision (r− 1 = 1) and one annual revision
(rb − 1 = 1)

Vintage date (t)
tY tY+1 tY+2

Obs. s R R + 1 R + 2 R + 3 R + 4 R + 5 R + 6 R + 7 R + 8
1 y1 y1 y1 y1 y1 y1 y1 y1 y1
2 y2 y2 y2 y2 y2 y2 y2 y2 y2
...

...
...

...
...

...
...

...
...

...
R− 2 yR−2 yR−2 yR−2 yR−2 yR−2 yR−2 yR−2 yR−2 yR−2

R− 1 yR−1|2 yR−1|2 yR−1|2 yR−1|2 yR−1 yR−1 yR−1 yR−1 yR−1

R yR|1 yR|2 yR|2 yR|2 yR yR yR yR yR
R + 1 yR+1|1 yR+1|2 yR+1|2 yR+1 yR+1 yR+1 yR+1 yR+1

R + 2 yR+2|1 yR+2|2 yR+2 yR+2 yR+2 yR+2 yR+2

R + 3 yR+3|1 yR+3|2 yR+3|2 yR+3|2 yR+3|2 yR+3

R + 4 yR+4|1 yR+4|2 yR+4|2 yR+4|2 yR+4

R + 5 yR+5|1 yR+5|2 yR+5|2 yR+5

R + 6 yR+6|1 yR+6|2 yR+6

R + 7 yR+7|1 yR+7|2
R + 8 yR+8|1

Comparing the revision structure with regular revisions only with the revisions structures

in Tables 1 and 2, which also contain annual revisions, we can see that the number of

preliminary observations in each vintage column would have been fixed at r in the regular

revisions only case, whereas in Tables 1 and 2, this number can vary from r to r−1+(rb−1)λ

depending on the vintage date. Because the number of preliminary observations may vary

from one vintage to another in annually revised real-time data, the number of preliminary

observations in a vector of vintage t predictors may also change when annually revised real-

time data are used to construct forecasts, as we discuss in the next section.

3 The testing framework under annual revisions

3.1 The null hypothesis and the test statistic

Except for the revision structure of the underlying data, our testing framework is identical

to that in Gonçalves, McCracken and Yao (2025). Specifically, at each forecast origin t =

R, . . . , T , the τ -step ahead forecasts are generated by a simple linear model xt(t)
′β̂(t), where

β̂(t) is a recursive OLS estimate based on vintage t data,

β̂(t) ≡
( t∑

s=1+τ+r̈

xs−τ (t)x
′
s−τ (t)

)−1
t∑

s=1+τ+r̈

xs−τ (t)ys(t),
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and xt(t) is a vector of vintage t predictors. Within xt(t), we allow each component to either

be a lagged dependent variable or a lagged weakly exogenous variable up to lag order r̈.

Because of this, we let the index s in the formula of β̂(t) start at 1 + τ + r̈. This ensures

that the r̈th lagged component in xs−τ (t) is observed in the data set. If forecasts are made

using an AR(p) forecasting model, then r̈ = p− 1, and xt(t) = (yt(t), . . . , yt−(p−1)(t))
′.

The τ -step ahead forecast, xt(t)
′β̂(t), is evaluated against yt+τ |r′ , the r

′th release of the

target variable yt+τ , where r
′ ∈ {1, . . . , rmax}. Given a sequence of real-time forecasts, one

is interested in testing the scalar null hypothesis

H0 : Ef(yt+τ |r′ , xt(t), β0) ≡ Eft+τ = 0,

where we let ft+τ ≡ f(yt+τ |r′ , xt(t), β0) for a known function f(.), and where β0 is the limit

in probability of β̂(t).

To test the null hypothesis we form a test statistic based on the finite sample analogue

of ft+τ , where β0 is replaced by β̂(t):

ŜP = P−1/2

T∑
t=R

f(yt+τ |r′ , xt(t), β̂(t)),

where P = T −R + 1.

3.2 The impact of annual revisions on the functional form of ft+τ

As in the regular revisions case, ft+τ depends on potentially preliminary data either because

the target variable yt+τ |r′ is preliminary or the predictors in xt(t) are preliminary. However,

unlike the case where only regular revisions exist, the decomposition of these predictors into

final and preliminary values may change across forecast origins when annual revisions are

present, as we explain next. This implies that the functional form of ft+τ can change over

time in a way that is not compatible with the standard covariance stationarity assumption.

To describe the periodicity in ft+τ induced by the periodicity in xt(t), we introduce the

following additional notation. Throughout, for t = R, . . . , R + λ − 1, the functional form

of xt(t) is defined as x
(t−R+1)
t . This notation implies that there are (potentially) λ different

functional forms for xt(t) as t varies across t = R through t = R + λ− 1. In particular, we

can write

xR(R) = x
(1)
R , xR+1(R + 1) = x

(2)
R+1, . . . , xR+λ−1(R + λ− 1) = x

(λ)
R+λ−1.

For t = R+λ, . . . , T , we write xt(t) = x
(j)
t if the functional form of xt(t) is identical to x

(j)
R+j−1

where j = 1, . . . , λ. This means that xt(t) = x
(1)
t if the functional form of xt(t) is identical to
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x
(1)
R ; and xt(t) = x

(λ)
t if the functional form of xt(t) is identical to x

(λ)
R+λ−1. Now consider how

the functional form of xt(t) evolves with t when a one-step ahead AR(4) forecasting model

is applied to data in Table 1. The form of xt(t)
′ = (yt(t), . . . , yt−3(t)) changes as follows:

xt(t) =


(yt|1, yt−1, yt−2, yt−3)

′ ≡ x
(1)
t , t = R + 4n

(yt|1, yt−1|1, yt−2, yt−3)
′ ≡ x

(2)
t , t = (R + 1) + 4n

(yt|1, yt−1|1, yt−2|1, yt−3)
′ ≡ x

(3)
t , t = (R + 2) + 4n

(yt|1, yt−1|1, yt−2|1, yt−3|1)
′ ≡ x

(4)
t , t = (R + 3) + 4n

where n ∈ N.
In this particular example, there are four different versions of xt(t) and each version of

xt(t) reappears once every 4 periods. For shorter AR forecasting models, some functional

forms of xt(t) may appear more frequently than others over time. For instance, if the

forecasting model is AR(2) and the data revisions structure is that in Table 1, we can show

that xt(t)
′ ≡ (yt(t), yt−1(t)) takes on only two different configurations: xt(t) = (yt|1, yt−1)

′ ≡
x
(1)
t when t = R + 4n with n ∈ N, whereas xt(t) = (yt|1, yt−1|1)

′ ≡ x
(2)
t = x

(3)
t = x

(4)
t for all

other values of t. In this example, it is clear that (yt|1, yt−1|1) appears more frequently than

(yt|1, yt−1) over time. Nonetheless, for j = 1, . . . , 4, x
(j)
t reappears at least one time every

four periods. For annually revised real-time data with frequency λ, we can write in general,

xt(t) =


x
(1)
t , t = R + λn

x
(2)
t , t = (R + 1) + λn

...

x
(λ)
t , t = (R + λ− 1) + λn.

Similarly to xt(t), there are at most λ versions of ft+τ , and for any vintage t, the functional

form of ft+τ reappears at least one time every λ periods. For n ∈ N, we let

ft+τ =


f(yt+τ |r′ , x

(1)
t , β0) ≡ f

(1)
t+τ , t = R + λn

f(yt+τ |r′ , x
(2)
t , β0) ≡ f

(2)
t+τ , t = (R + 1) + λn

...

f(yt+τ |r′ , x
(λ)
t , β0) ≡ f

(λ)
t+τ , t = (R + λ− 1) + λn.

(1)

Since the functional form of ft+τ may change with t, the mean and the correlation struc-

ture of ft+τ are not necessarily constant over time. This implies that the standard covariance

stationary assumption on ft+τ used in the existing literature (e.g., see Diebold and Mari-

ano (1995), West (1996), Clark and McCracken (2009) and Gonçalves, McCracken and Yao

(2025)) is not suitable when the functional form of ft+τ is not time invariant. In the next

section, we propose a set of assumptions that allows for the periodic heterogeneity of ft+τ

induced by the presence of annual revisions.
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4 Assumptions

We adapt the assumptions in Gonçalves, McCracken and Yao (2025) to the presence of

annual revisions.

Assumption 1 For each j = 1, . . . , λ with λ < ∞, in an open neighborhood Z around β0

and with probability one, (a) f
(j)
t+τ (β) is measurable and twice continuously differentiable. (b)

There exists a constant D < ∞ such that for all t and j, supβ∈Z

∣∣∣∂2f
(j)
t+τ (β)

∂β∂β′

∣∣∣ < mt+τ with a

measurable function mt+τ such that E(mt+τ ) < D.

Assumption 1 assumes that each version of ft+τ is well approximated by a quadratic function

in a neighborhood of β0. When there is only one version of ft+τ , it corresponds to Assumption

1 in Gonçalves, McCracken and Yao (2025).

Assumption 2 (a) The final-data estimate β̂t satisfies β̂t − β0 = B(t)H(t), where

B(t) =

(
t−1

t∑
s=1+τ+r̈

xs−τx
′
s−τ

)−1

a.s.−−→ B, H(t) = t−1

t∑
s=1+τ+r̈

hs

with E(hs) = 0, B = (E(xsx
′
s))

−1, and hs = xs−τ (ys − x′s−τβ0).

(b) The real-time data estimate β̂(t) satisfies β̂(t)− β0 = B̂(t)Ĥ(t), where

B̂(t) =

(
t−1

t∑
s=1+τ+r̈

xs−τ (t)xs−τ (t)
′

)−1

, Ĥ(t) = t−1

t∑
s=1+τ+r̈

hs(t)

with hs(t) = xs−τ (t)(ys(t)− xs−τ (t)
′β0).

Assumption 2 is notationally similar to Assumption 2 in Gonçalves, McCracken and Yao

(2025). The main difference is that we allow for both regular and annual revisions in xs−τ (t)

and ys(t). We also set the lower bound of the sums to 1+τ + r̈ rather than 1+τ to explicitly

account for the fact that the predictor vector for vintage t may include lagged components

up to order r̈. As explained above, the heterogeneity in the real-time function caused by

annual revisions is only a concern when r̈ > r−1, where r−1 denotes the number of regular

revisions.

To describe our next assumption, let

Vt+τ ≡ (f
(1)
t+τ , . . . , f

(λ)
t+τ )

′ and
∂Vt+τ

∂β′ ≡

(
∂f

(1)
t+τ

∂β
, . . . ,

∂f
(λ)
t+τ

∂β

)′

for t = R,R + 1, . . . , T . With this notation, define

gt+τ ≡
(

(Vt+τ − E(Vt+τ ))
′ (vec(∂Vt+τ

∂β′ − E(∂Vt+τ )
∂β′ )′)′ h′t+τ x′t − E(xt)

′
)′
.

11



Note that gt+τ includes the (centered) vector Vt+τ which collects the λ potentially different

versions of ft+τ , as well as (the vectorized version of) its Jacobian matrix, ∂Vt+τ

∂β′ , centered

around its mean E(∂Vt+τ

∂β′ ) (in addition, gt+τ includes the scores ht and the fully revised

(centered) predictors xt).

Our next assumption imposes a covariance stationarity assumption on gt+τ . Given equa-

tion (1), this assumption implies that the expected gradient of ft+τ varies periodically. In

particular, for n ∈ N, we let

Ft+τ ≡ E
(∂ft+τ

∂β′

)
=



E
(

∂f
(1)
t+τ

∂β′

)
≡ F (1), t = R + λn

E
(

∂f
(2)
t+τ

∂β′

)
≡ F (2), t = (R + 1) + λn

...

E
(

∂f
(λ)
t+τ

∂β′

)
≡ F (λ), t = (R + λ− 1) + λn.

In the following, we let F̄ = 1
λ

∑λ
j=1 F

(j), where F (j) ≡ E
(

∂f
(j)
t+τ

∂β′

)
.

Assumption 3 (a) For some d > 1 and δ > 0, suptE∥gt+τ∥4d+δ < ∞, where ∥ · ∥ de-

notes the Euclidean norm. (b) gt+τ is covariance stationary. (c) {gt+τ} is strong mix-

ing with mixing coefficients of size −3d/(d − 1). (d) Ω is positive definite, where Ω ≡
limP,R→∞ Var

(
P−1/2

∑T
t=R(ft+τ − E(ft+τ )) + F̄BP−1/2

∑T
t=RH(t)

)
.

Assumption 3 generalizes Assumption 3 in Gonçalves, McCracken and Yao (2025) to the

annual benchmarks revision context. Rather than assuming that ft+τ and ∂ft+τ

∂β′ are covari-

ance stationary, we impose a stationarity condition on the vector Vt+τ which contains f
(j)
t+τ

for j = 1, . . . , λ as well as on its Jacobian matrix (in addition, we assume that the scores

ht and the fully revised predictors xt are also stationary). Under this condition, and given

the definition of ft+τ given in equation (1), we can show that ft+τ (and its gradient ∂ft+τ

∂β′ )

are periodically stationary (or periodically correlated) time series with period λ. Following

Hurd and Miamee (2007), this means that

E(ft+τ ) = E(ft+τ+λ) and Cov(ft+τ+λ, fs+τ+λ) = Cov(ft+τ , fs+τ )

for each t, s ∈ Z. Hence, Assumption 3 allows the moments and the dependence structure

of ft+τ and ∂ft+τ

∂β′ to vary over time in a periodic manner, consistent with the periodicity

induced by annual revisions. A special case of Assumption 3 is Assumption 3 of Gonçalves,

McCracken and Yao (2025) where the functional forms of ft+τ and ∂ft+τ

∂β′ are time-invariant

since they only allow regular revisions.

12



Assumption 4 For some d > 1, rmax < ∞, and for i = 1, . . . , rmax, (yt|i, x
′
t, x

′
t|i)

′ is L4d

bounded.

Assumption 4 is the same as Assumption 4 in Gonçalves, McCracken and Yao (2025) in

that we assume that the number of revisions is finite and the preliminary data have slightly

more than four finite moments. The main difference is that here we allow for a total of

rmax = r − 1 + rb releases of which r − 1 are regular and rb are annual releases. When

there are no annual revisions, i.e., rb = 1, Assumption 4 corresponds to Assumption 4 in

Gonçalves, McCracken and Yao (2025).

The following assumption is standard and is the same as Assumption 5 in Gonçalves,

McCracken and Yao (2025).

Assumption 5 P,R → ∞ and limP,R→∞
P
R
= π, where 0 ≤ π <∞.

5 Asymptotic theory

5.1 Asymptotic distribution of ŜP

We define the centered statistic as

Ŝµ
P ≡ ŜP − P−1/2

T∑
t=R

E(ft+τ ).

Following Gonçalves, McCracken and Yao (2025), we first show that Ŝµ
P is asymptotically

equivalent to

S̃µ
P ≡ S̃P − P−1/2

T∑
t=R

E(ft+τ ) ≡ P−1/2

T∑
t=R

(ft+τ (β̂t)− E(ft+τ )),

where S̃P ≡ P−1/2
∑T

t=R ft+τ (β̂t) is a statistic based on the final data estimate β̂t, and

ft+τ (β̂t) = f(yt+τ |r′ , xt(t)
′, β̂t).

Lemma 5.1 Under Assumptions 1-5, Ŝµ
P = S̃µ

P + op(1).

Lemma 5.1 extends Lemma 4.1 of Gonçalves, McCracken and Yao (2025) to the context of

annually revised real-time data. Since the largest number of revisions occur for vintages with

annual revisions and Assumption 4 assumes that this number is finite, replacing β̂(t) by β̂t

when defining the test statistic is asymptotically equivalent.

Our next result derives an asymptotic expansion of S̃µ
P analogous to the usual expansion

in West (1996). This expansion is based on a second-order mean value expansion of ft+τ (β̂t)

13



around β0. Contrary to West (1996) and Clark and McCracken (2009), here we do not

assume covariance stationarity. Instead, we rely on Assumption 3 which assumes that ft+τ

and ∂ft+τ

∂β′ are periodically stationary.

Lemma 5.2 Suppose Assumptions 1-5 hold. Then

S̃µ
P = P−1/2

T∑
t=R

(ft+τ − E(ft+τ )) + F̄BP−1/2

T∑
t=R

H(t) + op(1) ≡ S1P + F̄BS2P + op(1).

Lemma 5.2 generalizes Lemma 1 of Clark and McCracken (2009) by allowing for the

presence of annual revisions and a general testing function ft+τ . The key difference is that

the contribution of parameter estimation uncertainty is now proportional to F̄ ≡ 1
λ

∑λ
j=1 F

(j),

the average of the periodic means of the gradient of f with respect to β. Without annual

revisions and assuming covariance stationarity, F̄ = F ≡ E
(
∂ft+τ

∂β′

)
, but not otherwise. As

the proof of Lemma 5.2 in Appendix A.2 shows, we rely crucially on the periodicity of

Ft+τ ≡ E
(
∂ft+τ

∂β′

)
to prove that SD ≡ P−1/2

∑T
t=R(Ft+τ − F̄ )BH(t) = op(1), a remainder

term that is zero under stationarity but not otherwise.

Next, we derive the asymptotic distribution of S̃µ
P under our new set of assumptions. We

introduce the following notation. Let Ω1 ≡ limR,P→∞ V ar(S1P ), Ω2 ≡ limR,P→∞ V ar(S2P ),

and Ω12 ≡ limR,P→∞Cov(S1P , S2P ).

Theorem 5.1 Let Assumptions 1-5 hold. Then, S̃µ
P

d−→ N(0,Ω), where Ω = Ω1+F̄BΩ2B
′F̄ ′+

2F̄BΩ12.

To prove Theorem 5.1, we show in Appendix A.2 that S1P and S2P jointly converge in

distribution to a normal random variable centered at zero, with a covariance matrix whose

diagonal elements are Ω1 and Ω2, respectively, and the off-diagonal element is Ω12. Although

this result is similar to West (1996)’s Lemma 4.1, the method of proof is different since we

do not assume stationarity.

Asymptotic inference based on Theorem 5.1 requires a consistent estimator of Ω, which

we discuss next.

5.2 Consistent variance estimator under annual revisions

We first introduce consistent estimators for B and Ω2. Note that these two terms only

depend on finalized data, hence they are not affected by annual revisions, and their standard

consistent estimators can be used. For B, we define B̂ = ( 1
T−τ−r̈

∑T
s=1+τ+r̈ xs−τx

′
s−τ )

−1.

14



Under Assumptions 2 and 4, B̂
p−→ B. For Ω2, we follow West (1996) by writing Ω2 as the

product of a scale factor and the long run variance of hs, i.e.,

Ω2 = 2Π · lim
R,P→∞

V ar(P−1/2

T∑
s=R

hs),

where Π ≡ (1− π−1 ln(1 + π). This product representation greatly simplifies the estimation

of Ω2, since π̂ = P
R
→ π implying that Π̂ → Π, and consistent kernel estimators are available

for the long run variance of hs. Utilizing the product representation of Ω2, we propose the

following kernel-based estimator,

Ω̂2 = 2Π̂ · 1
P

T∑
t=R

T∑
s=R

ĥtĥ
′
sK((t− s)/b),

where K(·) is the kernel function, b ≡ bP is the kernel bandwidth, and ĥt ≡ h(β̂T ) with β̂T

the OLS estimate of β0 defined in Assumption 2.

Next we present consistent estimators for F̄ ≡ λ−1
∑λ

j=1 F
(j), Ω1, and Ω12. Note that

these three terms depend on the testing function ft+τ which may not be covariance stationary

in our context.

For F̄ , we define ˆ̄F = P−1
∑T

t=R ∂ft+τ (β̂T )/∂β
′, where ∂ft+τ (β̂T )/∂β

′ is the (row) vector

of partial derivatives of ft+τ with respect to β evaluated at β̂T . This is the same estimator

as proposed by Clark and McCracken (2009), but its limit in probability is different under

annual revisions. In particular, it is equal to F̄ here as opposed to F under covariance

stationarity of ft+τ .

To estimate Ω1, we propose

Ω̂1 =
1

P

T∑
t=R

T∑
s=R

(f̂t − f̄)(f̂s − f̄)K((t− s)/b),

where f̂t ≡ ft(β̂T ) and f̄ ≡ P−1
∑T

t=R f̂t. Although this is the same estimator as in West

(1996) without revisions, and as in Clark and McCracken (2009) with regular revisions

only, we do not require covariance stationarity for its validity, thus accommodating annual

revisions. In particular, we show in Appendix A that Ω̂1 is consistent for Ω1 under the null

hypothesis that E(ft+τ ) = 0, a result that follows from de Jong and Davidson (2000) (see

also Gallant and White (1988)) for general heterogeneous weakly dependent arrays.

Estimation of Ω12 is more involved. It depends on the long run covariance between ft+τ

and H(t) ≡ t−1
∑t

s=1+τ+r̈ hs. When ft is covariance stationary, we can write Ω12 as the

product of Π and the long run covariance between ft and hs, a result which follows by
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Lemma A6 in West (1996) and which motivates the standard estimator of Ω12 given by

Ω̂12 = Π̂ · 1
P

T∑
t=R

T∑
s=R

(f̂t − f̄)ĥ′sK((t− s)/b).

Clark and McCracken (2009) rely on this estimator assuming that ft depends on data subject

to regular revisions only, which justifies their stationarity condition on ft. However, when

ft is subject to annual revisions, stationarity may not hold, and we cannot directly apply

Lemma A6 in West (1996). In order to obtain West’s (1996) product representation for Ω12

and justify the standard estimator Ω̂12, we exploit the periodic stationarity assumption on

ft and impose the following restriction on the dependence between ft and hs.

Assumption 6 E
(
(fs − E(fs)

)
h′t) = 0 for |s− t| > M where M is a positive integer.

Assumption 6 allows for the testing function ft and the scores hs to be correlated up to

some finite lag order M . Although this is a more restrictive dependence condition than in

West (1996) and Clark and McCracken (2009), it greatly simplifies the proof of the following

result, which is the analogue of Lemma A6 in West (1996) under annual revisions.

Lemma 5.3 Let Assumptions 1-6 hold. Then,

Ω12 = Π · lim
R,P→∞

P−1

T∑
t=R

T∑
s=R

E
(
(ft+τ − E(ft+τ ))h

′
s

)
.

Lemma 5.3 justifies estimating Ω12 using Ω̂12 defined above. Combining these results, our

proposed estimator of Ω is

Ω̂ = Ω̂1 +
ˆ̄FB̂Ω̂2B̂

′ ˆ̄F ′ + 2 ˆ̄FB̂Ω̂′
12.

The following assumption provides sufficient conditions on K(·) and b for the consistency of

the kernel-based estimators of Ω1, Ω2, and Ω12. These conditions are similar to those used by

de Jong and Davidson (2000), whose Theorem 2.2 is used when proving Theorem 5.2 below.

Assumption 7 (a) Let K(x) be a continuous kernel function such that for all real scalars

x, |K(x)| ≤ 1, K(x) = K(−x) and K(0) = 1,
∫∞
−∞ |K(x)|dx < ∞, and

∫∞
−∞ |ψ(ξ)|dξ < ∞,

where ψ(ξ) = (2π)−1
∫∞
−∞K(x)eiξxdx. (b) b ≡ bP → ∞, P−1/2bP → 0.

Theorem 5.2 Let Assumptions 1-7 hold, and assume that there exists N , an open neigh-

borhood around β0, such that E supβ∈N ∥ ∂ft
∂β′∥2 <∞. Then, under H0, Ω̂

p−→ Ω.
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Theorem 5.2 shows the consistency of Ω̂ under H0 when E(ft+τ ) = 0. Under the al-

ternative hypothesis, Ω̂ is not necessarily consistent for Ω unless Eft+τ is time invariant.

The reason is that a bias term may appear in Ω̂1 (and hence in Ω̂), as implied by Gallant

and White (1988)’s Theorem 6.8. Because this bias is O(b), the studentized statistic is of

order Op(
√
P/b), which diverges under the condition that P−1/2b → 0. This ensures the

consistency of the standard test statistic.

6 Bootstrap inference

The main contribution of this section is to prove the validity of the bootstrap method pro-

posed by Gonçalves, McCracken and Yao (2025) when applied to annually revised real-time

data. In particular, we show here that this method is robust to the periodic heterogeneity

in ft+τ implied by the annual revisions. It can successfully replicate the asymptotic expan-

sion in Lemma 5.2 and the asymptotic variance Ω described in Theorem 5.1 under the null

hypothesis.

For completeness, we describe Gonçalves, McCracken and Yao (2025)’s bootstrap algo-

rithm next. This algorithm consists of two applications of the moving blocks bootstrap

(MBB): one to the first part of the sample ending at observation R, and another to the out-

of-sample period starting after R. The application of the MBB guarantees that the serial

dependence within each vintage is preserved. Because the same random indices are used

to reshuffle the data across different vintages, the method preserves the dependence across

vintages, including the dependence in the revisions.

In the following, ℓ denotes the block size used in applying the MBB.

Bootstrap algorithm (Gonçalves, McCracken and Yao (2025))

1. LetR−(1+τ+r̈)+1 = k1ℓ and generate I1, . . . , Ik1 ∼ i.i.d. Uniform on {1+τ+r̈, . . . , R−
ℓ+1}. Then, for each i = 1, . . . , k1 and j = 1, . . . , ℓ, set Ii+(j−1) = γ1+τ+r̈+(i−1)ℓ+(j−1)

and let

{γs : s = 1 + τ + r̈, . . . , R} = {γ1+τ+r̈+(i−1)l+(j−1) : i = 1, . . . , k1; j = 1, . . . , ℓ}.

Let T+τ−(R+1)+1 = k2ℓ and generate J1, . . . , Jk2 ∼ i.i.d Uniform on {R+τ, . . . , T+

τ − ℓ+ 1}. For each i = 1, . . . , k2 and j = 1, . . . , ℓ, set Ji + (j − 1) = ηR+1+(i−1)ℓ+(j−1),

and let

{ηs : s = R + 1, . . . , T + τ} = {ηR+1+(i−1)ℓ+(j−1) : i = 1, . . . , k2; j = 1, . . . , ℓ}.
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2. For t = R, . . . , T , set

(y∗s , x
∗′
s−τ ) =

{
(yγs , x

′
γs−τ ) if 1 + τ + r̈ ≤ s ≤ R

(yηs , x
′
ηs−τ ) if R + 1 ≤ s ≤ t,

and compute

β̂∗
t =

(
t−1

t∑
s=1+τ+r̈

x∗s−τx
∗′
s−τ

)−1

t−1

t∑
s=1+τ+r̈

x∗s−τy
∗
s .

3. For t = R, . . . , T, let

(y∗t+τ |r′ , x
∗
t (t)) = (yηt+τ |r′ , xηt+τ−τ (ηt+τ − τ)),

and set

f ∗
t+τ (β̂

∗
t ) ≡ f(y∗t+τ |r′ , x

∗
t (t), β̂

∗
t ).

4. Compute

S̃∗
P ≡ P−1/2

T∑
t=R

(f ∗
t+τ (β̂

∗
t )− ft+τ (β̄t)),

where β̄t =
R
t
β̂R + t−R

t
β̂P , with

β̂R =
(
R−1

R∑
s=1+τ+r̈

xs−τx
′
s−τ

)−1

R−1

R∑
s=1+τ+r̈

xs−τys

and

β̂P =
(
P−1

T+τ∑
s=R+τ

xs−τx
′
s−τ

)−1

P−1

T+τ∑
s=R+τ

xs−τys.

5. Reject H0 : E(ft+τ ) = 0 at level α if |S̃P | ≥ ĉ1−α, where ĉ1−α is the 100(1 − α)th

percentile of the bootstrap distribution of |S̃∗
P |.

The first application of the MBB in step 1 draws random indices γt from a set of integers

ending at R. These indices are used to reshuffle the first part of the sample (e.g., in Table 1,

the first R rows), setting all observations as final. Although this does not mimic exactly the

nature of the first part of the sample (e.g., the Rth row in Table 1 also contains preliminary

values for the first four vintages), these data are used only in the estimation of β0. Given

our assumption of a finite number of revisions, setting those observations in the bootstrap

as final does not have an impact on the test statistic asymptotically (this explains also why

in step 2 we estimate β0 using the final data estimator β̂∗
t rather than the real-time data

estimator β̂∗(t)).
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The second application of the bootstrap in step 1 draws random indices ηt for t ≥ T + 1

from a set of integers starting at R + τ , for which both final and preliminary observations

are available. These indices are used twice, first in step 2 to obtain the bootstrap data for

t ≥ R + 1 used in computing β̂∗
t , setting these observations as final; and second in step

3 to obtain the bootstrap analogue f ∗
t+τ (β̂

∗
t ) of the testing function ft+τ (β̂t) for t ≥ R. In

obtaining f ∗
t+τ (β̂

∗
t ) ≡ f(y∗t+τ |r′ , x

∗
t (t), β̂

∗
t ), we resample the “pairs” (y∗t+τ |r′ , x

∗
t (t)

′), where x∗t (t)

is a resampled version of the vintage-t predictor vector xt(t) which contains a mix of final

and preliminary observations. Gonçalves, McCracken and Yao (2025) showed the validity of

this method under regular revisions only. In this case, xt(t) has a time-invariant structure,

and its resampled version x∗t (t) mimics the structure of x(t) for each t.

We show next that this method is also robust to annual revisions. This is despite the

fact that the bootstrap does not mimic exactly the pattern of xt(t) when there are annual

revisions. To see this, consider Table 1 and suppose that the target variable is yt+1 and

the predictor is xt(t) = yt−1(t) (as it would be the case if we relied on a restricted AR(2)

model that only uses the twice-lagged value of the dependent variable as a predictor). The

presence of annual revisions implies that xt(t) alternates between yt−1|1 (when there are

no annual revisions) and yt−1 (otherwise). According to step 3, the bootstrap analogue of

(yt+1, xt(t)) is (y∗t+1, x
∗
t (t)) = (yηt+1 , xηt+1−1(ηt+1 − 1)) for any t ≥ R. Hence, for t = R,

x∗R(R) = xηR+1−1(ηR+1 − 1). Suppose we draw ηR+1 according to step 1 and we obtain

ηR+1 = R+4. The bootstrap analogue of xR(R) = yR−1 (a final value) is xR+3(R+3) = yR+2|1,

a preliminary value. Hence, for t = R we have replaced a final value of the predictor by

a preliminary value. If instead we draw ηR+1 = R + 5, we obtain x∗R(R) = yR+3, a final

value. Thus, depending on the realization of ηR+1, this bootstrap may or may not enforce

the correct classification of xR(R) as a final value. Note that if only regular revisions exist (as

in Gonçalves, Yao and McCracken (2025)), xt(t) = yt−1 for all t and its bootstrap analogue

is always a final value.

Although Gonçalves, Yao and McCracken (2025)’s bootstrap does not always replicate

the classification of the predictor into final or preliminary, it allows for both. In particular, by

bootstrapping the pairs (yt+τ , xt(t)), step 3 is equivalent to resampling the (heterogeneous)

testing function ft+τ . As shown by Gonçalves and White (2002), the moving blocks boot-

strap variance (and distribution) of a sample mean is consistent for heterogeneous weakly

dependent arrays provided a certain mean heterogeneity condition holds (see their Assump-

tion 2.2). In our context, this condition is satisfied under the null since Eft+τ = 0. Hence,

the moving blocks bootstrap in step 3 is able to replicate Ω1 under the null. This in turn
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implies that the MBB is able to replicate the asymptotic distribution of S̃P under the null.

To describe these results, we let f ∗
t+τ ≡ f(y∗t+τ |r′ , x

∗
t (t), β0), S

∗
1P = P−1/2

∑T
t=R(f

∗
t+τ −

ft+τ ), and

S∗
2P = aR,0P

−1/2

R∑
s=1+τ+r̈

(h∗s − h̄R) + P−1/2

P−1∑
i=1

aR,i(h
∗
R+i − h̄P ) ≡ S∗

2P.1 + S∗
2P.2,

where h∗t = x∗t−τ (y
∗
t − x∗′t−τβ0), h̄R = (R− τ − r̈)−1

∑R
s=1+τ+r̈ hs and h̄P = P−1

∑T+τ
s=R+τ hs.

As usual in the bootstrap literature, in the following we let P ∗ denote the bootstrap

probability measure, conditional on the original sample. Appendix B.1 contains a description

of our bootstrap notation, including the definition of o∗p(1).

Lemma 6.1 Under Assumptions 1-5 and letting ℓ→ ∞ such that ℓ/min{
√
R,

√
P} → 0,

S̃∗
P ≡ P−1/2

T∑
t=R

(f ∗
t+τ (β̂

∗
t )− ft+τ (β̄t)) = S∗

1P + F̄BS∗
2P + o∗p(1).

Lemma 6.1 shows that the MBB replicates the asymptotic expansion of S̃µ
P derived in

Lemma 5.2. This result is instrumental in proving the consistency of the bootstrap distri-

bution.

Theorem 6.1 Suppose Assumptions 1-6 hold, and ℓ→ ∞ such that ℓ/min{
√
R,

√
P} → 0.

Then, under H0, supu∈R
∣∣P ∗(S̃∗

P ≤ u
)
− Pr

(
S̃P ≤ u

)∣∣→p 0.

Theorem 6.1 ensures that our bootstrap test has correct asymptotic size. To ensure that

the bootstrap test has power, it suffices to show that the bootstrap statistic S̃∗
P diverges

at a smaller rate than S̃P . Since the latter diverges at rate Op(P
1/2), this requires that

S̃∗
P diverges at rate P 1/2−δ, for some δ > 0. This is true in our context if Eft+τ is time

invariant under the alternative hypothesis, a result that follows from from Gonçalves and

White (2002)’s Lemma 2.1. More generally, if Eft+τ is time varying, the bootstrap variance

of S̃∗
P contains a bias term that diverges at rate O(ℓ) but since ℓ = o(P 1/2) by assumption,

S̃∗
P diverges at a smaller rate than S̃P .

7 Monte Carlo simulations

In this section, we examine the finite sample performance of four out-of-sample tests in the

context of the zero-mean prediction error test (Zero MPE) and the equal mean square error

test (Equal MSE) with annually revised real-time data. The first test is the t-test of Diebold

and Mariano (1995), labeled tDM . It takes the form tDM = Ω̂
−1/2
1 ŜP . The second test is
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the t-test of Clark and McCracken (2009), labeled tCM , implemented using Ω̂ as described

in Section 5. The third test is a restricted version of the bootstrap algorithm in Gonçalves,

McCracken and Yao (2025) which only replicates the structure of regular revisions, ignoring

the presence of annual revisions. For instance, in the example described in Section 6 (see

also below), it sets the bootstrap predictor always as final, i.e. x∗t (t) = y∗t−1 = yηt+1−1 for all

t ≥ R in Step 3. We label this test BootstrapR. The fourth test is the original bootstrap

algorithm introduced in Gonçalves, McCracken and Yao (2025), labeled by Bootstrap.

7.1 Zero MPE experiment

The design of the experiment is comparable to that in Section 6.3.2 in Gonçalves, McCracken

and Yao (2025). Specifically, we consider two AR models for forecasting yt+1, one is an AR(1)

model with the once lagged y value as predictor, and the other is a restricted AR(2) model

where the predictor is the twice lagged y value (which is the example described in Section 6

when discussing the bootstrap). The data generating process of these two models can be

described as

yt = xt−1β0 + et + vt and yt|1 = yt − vt + wt,

where et ∼ i.i.d.N(0, σ2
e), vt ∼ i.i.d.N(0, σ2

v), and wt ∼ i.i.d.N(µw, σ
2
w). We set xt−1 = yt−1

for the AR(1) model and xt−1 = yt−2 for the AR(2) model. For both models, we let σ2
e =

0.3, σ2
v = 0.2, σ2

w = 0.2, µw = 0.85. Under the null hypothesis, β0 = 0, which implies

yt ∼ i.i.d.N(0, σ2), with σ2 = σ2
e+σ

2
v . We set β0 = 0.5 under the alternative hypothesis. The

first release yt|1 is only subject to one annual revision, which takes place every λ periods. In

our experiments, we set λ = 1, 4, 12. When λ = 1, this revision structure is equivalent to

a single regular revision. When λ = 4, it represents quarterly released real-time data with

a single annual revision, as in Table 1. When λ = 12, it corresponds to a monthly released

real-time data with a single annual revision. The null hypothesis of interest takes the form

H0 : Eft+1 = E(yt+1 − xt(t)
′β0) = 0.

For the AR(1) model, xt(t) = yt(t) = yt|1 for any t. This means that the functional form

of ft+1 is time-invariant, i.e., ft+1 = f
(1)
t+1 = . . . = f

(λ)
t+1, and F

(1) = F (2) = . . . = F (λ) = F̄ .

For this reason, the asymptotic results in Clark and McCracken (2009) and Gonçalves,

McCracken and Yao (2025) apply; the Bootstrap algorithm is valid and numerically equivalent

to its restricted version BootstrapR.

Contrary to the AR(1) experiment, for λ > 1, the functional form of ft+1 changes across t

in the AR(2) experiment. This is because in this case, xt(t) = yt−1(t), and the functional form
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of yt−1(t) depends on t. Using Table 1 as an example, we see that in annual revision periods,

yt−1(t) = yt|1 and ft+1 = yt+1 − yt|1β0 ≡ f
(1)
t+1, while in the remaining periods, yt−1(t) = yt

and ft+1 = yt+1 − ytβ0 ≡ f
(2)
t+1 = f

(3)
t+1 = f

(4)
t+1. Hence, ft+1 is heterogenous, alternating

between f
(1)
t+1 and f

(2)
t+1 every 4 periods. Note that in this case, F̄ = 1

4

∑4
j=1 F

(j), where

F (1) = E∂f
(1)
R+1/∂β = −EyR−1(R) = −EyR−1, and F (2) = F (3) = F (4) = E∂f

(4)
R+4/∂β =

−EyR+2(R + 3) = −EyR+2|1. Under the null hypothesis, EyR−1 = 0, and EyR+2|1 = µw.

Note also that when λ > 1, BootstrapR is different from Bootstrap because the first algorithm

enforces the regular revision structure by setting (y∗t+1, x
∗
t (t)) = (yηt+1 , yηt+1−1), whereas the

Bootstrap algorithm sets (y∗t+1, x
∗
t (t)) = (yηt+1 , yηt+1−1(ηt+1)). BootstrapR effectively amounts

to resampling only one version f
(1)
t+1 of ft+1, thus disregarding its heterogeneity. Instead,

Bootstrap reshuffles ft+1 in its entirety and only this method is valid asymptotically under

annual revisions (except when λ = 1, in which case the two methods coincide).

Table 3 contains the results for nominal level α = 0.05, based on 10,000 Monte Carlo

replications and 499 bootstrap replications each. We set R = 80 and P = 80. Since

ft+1 = yt+1 ∼ i.i.d.N(0, σ2) under the null, we set the block size ℓ = 1 and the bandwidth

parameter b = 1. Note also that Assumption 6 is automatically satisfied in this example.

The left panel of Table 3 shows that the Diebold and Mariano test is particularly over-

sized. This is because it does not account for parameter estimation uncertainty, which should

not be ignored when the underlying data are subject to revisions. We also see that BootstrapR

is oversized when the AR(2) model is used on data with λ = 4, 12. Under these settings, ft+1

is heterogeneous, and resampling only one version of ft+1 (f
(1)
t+1, the one corresponding to

predictor xt(t) = yt−1) is not valid. In contrast, both the Clark and McCracken test tCM and

the Gonçalves, McCracken and Yao (2025) Bootstrap test correct the size distortions brought

by annual revisions. Their performance is very similar, both yielding slightly oversized tests

when λ = 12. As expected, Bootstrap is identical to BootstrapR when the forecasting model

is AR(1) or when the forecasting model is AR(2) and λ = 1.

The right panel of Table 3 shows the power results. Except for the AR(2) forecasting

model with λ = 1, all four tests have power larger than 0.88. When the model is AR(2) and

λ = 1, we have that

Eft+1(β) = E(yt+1 − yt−1(t)β) = E(yt+1 − yt−1β) = 0− 0 · β = 0 for any β <∞.

Hence, setting β to 0.5 does not constitute a deviation from the null.
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Table 3: Size and power results of zero MPE experiment

Tests λ = 1 4 12 λ = 1 4 12
size: AR(1) power: AR(1)

tDM 0.157 0.159 0.207 0.978 0.983 0.992
tCM 0.057 0.052 0.076 0.955 0.965 0.980

BootstrapR 0.053 0.052 0.072 0.958 0.967 0.982
Boootstrap 0.053 0.052 0.072 0.958 0.967 0.982

size: AR(2) power: AR(2)
tDM 0.055 0.108 0.162 0.057 0.930 0.987
tCM 0.055 0.049 0.064 0.057 0.887 0.966

BootstrapR 0.053 0.106 0.162 0.056 0.942 0.992
Bootstrap 0.053 0.046 0.063 0.056 0.883 0.966

7.2 Equal MSE experiment

In this experiment, we let yt+1 = z1,tβ1,0+z2,tβ2,0+ey,t+1+vy,t+1, where ey,t+1 ∼ i.i.d.N(0, σ2
e,y)

is the error term and vy,t+1 ∼ i.i.d. N(0, σ2
v,y) is the news term. For i = 1, 2, we let

zi,t =

{
xi,t if the data generating process is DL(1),

xi,t−1 if the data generating process is DL(2),

where DL(q) denotes a distributed lag model of order q. We generate xi,t = exi,t + vxi,t with

exi,t ∼ i.i.d. N(0, σ2
e,x) and vxi,t ∼ i.i.d. N(0, σ2

v,x). The revisions structure is similar to that

in the zero MPE experiment. Specifically, at each time t, there are two estimates for x1,t,

x2,t and yt, the preliminary estimate, and the final estimate. The final estimates are only

observed after annual revisions, which take place every λ periods. We set λ = 1, 4, 12. For

i = 1, 2, we let

xi,t|1 = xi,t − vxi,t + wxi,t, and yt|1 = yt − vy,t + wy,t,

where the noise term of x is i.i.d. N(0, σ2
w,x), and the noise term of y is i.i.d. N(0, σ2

w,y). For

both DL(1) and DL(2) models, we let σ2
e,y = 0.1, σ2

v,y = 0.9, σ2
w,y = 0.2, σ2

e,x = 1.7, σ2
v,x =

0.3, σ2
w,x = 4. The null hypothesis of interest is

H0 : Eft+1 = E((yt+1 − z1,t(t)β1,0)
2 − (yt+1 − z2,t(t)β2,0)

2) = 0,

where zi,t(t) = xi,t(t) if the data generating process is DL(1) and zi,t = xi,t−1(t) if the data

generating process is DL(2). We let β1,0 = β2,0 = 0.4 under the null and set β2,0 to 1 under

the alternative hypothesis.

Note that for the DL(1) model, xi,t(t) = xi,t|1 for any t and λ. Hence, for this model, the

functional form of ft+1, E∂ft+1/∂β1,0 and E∂ft+1/∂β2,0 do not depend on t nor on the value

of λ. Furthermore, as explained in Clark and McCracken (2009), using xi,t|1 as a predictor
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Table 4: Size and power results of equal MSE experiment

Tests λ = 1 4 12 λ = 1 4 12
size: DL(1) power: DL(1)

tDM 0.104 0.099 0.088 0.505 0.456 0.370
tCM 0.045 0.039 0.027 0.435 0.380 0.272

BootstrapR 0.041 0.031 0.017 0.409 0.326 0.178
Bootstrap 0.041 0.031 0.017 0.409 0.326 0.178

size: DL(2) power: DL(2)
tDM 0.073 0.083 0.086 0.986 0.195 0.270
tCM 0.069 0.043 0.033 0.986 0.152 0.196

BootstrapR 0.058 0.301 0.305 0.985 0.518 0.612
Bootstrap 0.058 0.036 0.020 0.985 0.128 0.129

may result in a non zero F̄ . This means that Ω is of the long form given in Theorem 5.1. In

contrast, when the forecasting model is DL(2) and λ = 1, xi,t−1(t) = xi,t−1 for all t. Hence,

in this case, F̄ is zero, and Ω = Ω1.

For the DL(2) model, deriving the form of Ω is more complicated when λ > 1. Specifically,

for λ = 4 and 12, we have that

ft+1 =

{
((yt+1 − x1,t−1|1β1,0)

2 − (yt+1 − x2,t−1|1β2,0)
2) if at time t there are no annual revisions,

((yt+1 − x1,t−1β1,0)
2 − (yt+1 − x2,t−1β2,0)

2) if at time t there are annual revisions,

implying that for i = 1, 2,

E∂ft+1/∂βi,t =

{
(−1)i2E((yt+1 − xi,t−1|1βi,0)xi,t−1|1) ̸= 0 if at time t there are no annual revisions,

(−1)i2E((yt+1 − xi,t−1βi,0)xi,t−1) = 0 if at time t there are annual revisions.

After some algebra, we can show that F̄ = λ−1
λ
(−2σ2

w,xβ1,0, 2σ
2
w,xβ2,0). Thus, except if λ = 1,

Ω ̸= Ω1 and we need to account for parameter estimation uncertainty.

Table 4 contains results for α = 0.05, obtained with 10,000 Monte Carlo replications and

499 bootstrap replications each as in the previous section. Similarly, we set R = P = 80.

Following Gonçalves, McCracken and Yao (2025), we let ℓ = ⌊min{R1/3, P 1/3}⌋ ensuring

that ℓ/min{
√
R,

√
P} → 0 as ℓ → ∞. The left panel of Table 4 shows tests size. Diebold

and Mariano’s (1995) tests are oversized, all well above 8%, except for the DL(2) model with

λ = 1. In this particular case, the parameter estimation uncertainty does not contribute to

the overall variance, implying that tDM is asymptotically valid. The size results of Clark

and McCracken (2009)’s test range from 2.7% to 6.9%, confirming the robustness of tCM

to annual revisions. The size results of BootstrapR test range from 1.7% to 30.5%. As

explained previously, this test is not valid when λ > 1 because it incorrectly enforces the

regular revision structure on the bootstrap samples, failing to replicate the correct asymptotic
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variance when the forecasting model is DL(2). In contrast, the Bootstrap test produces much

more reasonable size results, which range from 1.7% to 5.8%. The right panel of Table 4 shows

the power results. All tests are negatively affected by annual revisions, but power increases

as we increase P . See Table C.1 in Appendix C, which contains additional simulation results

for P = 320.

8 Forecasting U.S. employment growth

In this section, we apply our bootstrap and the test statistic developed in Clark and Mc-

Cracken (2009) to tests of equal forecast accuracy in the context of employment growth

forecasting. While there are many existing papers that forecast employment growth, includ-

ing Rapach and Strauss (2008, 2010) and Borup and Schütte (2022), most consider only

current vintage data and hence do not address a more realistic situation in which data are

subject to revision.1

With that in mind we compare the relative accuracy of a small handful of linear fore-

casting models for forecasting U.S. employment growth at 3- and 12-month horizons. The

benchmark model is an AR(5) where the number of lags was selected using BIC. The com-

peting models each take the form of an AR(5) augmented with a single lag of either initial

unemployment claims (claims; monthly average of weekly data), total capacity utilization

(TCU), or the vacancy rate (v/u).2 Four of the series (employment, claims, TCU, vacancy)

are subject to both regular and annual revisions. In contrast, the number of unemployed is

only subject to an annual revision. All series are seasonally adjusted by the source. Vintages

of TCU were obtained from the RTDSM hosted by the Federal Reserve Bank of Philadel-

phia and all other vintages from ALFRED hosted by the Federal Reserve Bank of St. Louis.

Among our series, vacancies has the most limited history. Data for vacancies was first re-

leased by the BLS in December of 2000 based on the Job Openings and Labor Transition

Survey (JOLTS). ALFRED has vintages associated with JOLTS starting in 2010:09 with

observations dating back to 2000:12. Earlier vintages could be manually constructed using

source data from the BLS. However, since we want a substantial number of observations

available for parameter estimation at our first forecast origin, we have chosen to simply use

the vintages in ALFRED.

1A notable exception is Barnichon and Nekarda (2012).
2In unreported results we also consider the vacancy-to-labor force ratio and the vacancy-to-(unemployed

+ all employed who make a job-to-job transition)-ratio, the latter of which is motivated by Birinci et al.
(2024). In all experiments the vacancy rate provided more accurate forecasts and so for brevity we only
report those results.
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Within each vintage t we apply the following data transformations. Annualized monthly

employment growth (y
[1]
t = yt) is constructed as twelve times the log first difference of total

nonfarm payroll employment. 3- and 12-month employment growth are constructed in the

obvious way as y
[3]
t =

∑2
j=0 yt−j/3 and y

[12]
t =

∑11
j=0 yt−j/12 respectively. TCU and claims

are transformed to be twelve-times the monthly first differences.

Constructing the vacancy rate requires a bit more thought. The issue is that the JOLTS

data are released with a two-month lag. For many macroeconomic series like unemployment,

the data is released with only a one-month lag so that the most recently reported value is

associated with the previous month. In contrast, the most recent value for vacancies is from

two-months previous. To insure that the concept of a vacancy rate is properly defined we

construct it as (v/u)s(t) = vs(t)/us−1(t) for all observations s = 1, . . . , t in vintage t.

For each forecast horizon τ = 3, 12, the three OLS estimated forecasting models take the

form

y
[τ ]
t (t) = β0 +

5∑
j=1

βjyt−τ+1−j(t) + β6xt−τ (t) + u
[τ ]
t (t)

where x is either omitted or denotes claims, TCU , or v/u. As noted earlier, due to data

limitations associated with JOLTS data, we restrict attention to a sample starting in 2000:12

and hence all OLS regressions are estimated on a sample ranging from 2000:12 through a

given forecast origin. Throughout, all forecasts are evaluated against the initial release y
[τ ]
t+τ |1.

Table 5 provides the results of our forecasting exercise. The first two columns denote the

six pairwise model comparisons while the remaining columns distinguish the forecast horizon.

For each permutation of model comparison and horizon we report three numbers. The first

denotes the ratio of root mean squared errors (RMSE) such that a value less than one favors

model 1. The second number denotes the percentile bootstrap p-value (in parentheses)

associated with the test of equal forecast accuracy under quadratic loss. For the same test,

the third number is the p-value (in brackets) implied by the asymptotic distribution of the

test statistic delineated in Clark and McCracken (2009).

Across both horizons there is little difference in forecast accuracy across models. The

benchmark autoregressive model is nominally the most accurate in almost all cases but the

gains are small and nearly always statistically insignificant when using either the asymptotic

or bootstrap p-values. The sole exception arises at the 3-month horizon when using the

vacancy rate as a predictor. Here the benchmark model is roughly 5 percent more accurate

and significantly so at conventional levels. Interestingly, the only other signs of statistical

significance arise when comparing the claims and TCU models to the vacancy rate. This

is particularly true in the final row where we see that at the 3-month horizon, the TCU-
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Table 5: Application to Forecasting Employment Growth

Model 1 Model 2
Total Employment Growth

τ = 3 τ = 12

AR(5) AR(5) + claims 0.983 1.003

(0.713) (0.655)

[0.649] [0.691]

AR(5) AR(5) + TCU 0.992 0.996

(0.905) (0.581)

[0.633] [0.558]

AR(5) AR(5) + v/u 0.948 0.990

(0.097) (0.183)

[0.007] [0.302]

AR(5) + claims AR(5) + TCU 1.009 0.993

(0.757) (0.621)

[0.796] [0.609]

AR(5) + claims AR(5) + v/u 0.964 0.987

(0.099) (0.293)

[0.331] [0.301]

AR(5) + TCU AR(5) + v/u 0.956 0.993

(0.087) (0.445)

[0.026] [0.510]

Notes: For each pairwise comparison, the table presents: the ratio of root mean squared errors,
the p-value associated with a test of equal forecast accuracy based on our percentile bootstrap (in
parentheses), and the p-value for the same test based on the asymptotic distribution associated with
the test statistic delineated in Clark and McCracken (2009) (in square brackets). RMSE ratios less
(greater) than one favor model 1 (2). Results are provided for an initial window size R = 115 and
horizons τ = 3 and τ = 12, across 999 bootstrap replications. The forecast origins range from July
2010 to August 2024 for τ = 3 and from July 2010 to November 2023 for τ = 12.
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augmented model is significantly better based on either set of p-values. While speculative,

it may be that the delayed data release associated with JOLTS may have an impact on the

short run predictive content of the vacancy rate for employment growth.

9 Conclusions

This paper derives the limiting distributions for West-type out-of-sample predictability tests

when the underlying data are subject to annual revisions. Specifically, we show that these

tests are still asymptotically normal with annually revised real-time data, but the asymptotic

variance may be different than that obtained with regular revisions only. We then show

that both the t-test of Clark and McCracken (2009) and the bootstrap test of Gonçalves,

McCracken and Yao (2025) are robust to the change in asymptotic variance caused by the

presence of annual revisions. Monte Carlo simulations confirm our analytical results. We

conclude with an application to employment growth forecasting in the presence of real-time

vintage data that exhibits both regular and annual benchmark revisions.
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A Appendix: Asymptotic Theory

Throughout this Appendix and the next, we will write GMY(2025) to refer to Conçalves,

McCracken and Yao (2025). For simplicity, we treat β as a scalar and focus on the case of

a single model; we also let T − R + 1 = P = Nλ, where λ is the periodicity of the annual

revisions. Following West (1996), we write “supt” to mean “supR≤t≤T”.

A.1 Auxiliary lemmas

Here, we provide several auxiliary lemmas, followed by their proofs.

Lemma A.1 Under Assumptions 1-5,

(a) supt |B̂(t)−B(t)| = op(1).

(b) P−1/2
∑T

t=R |Ĥ(t)−H(t)| = op(1).

(c) For any 0 ≤ a < 1/2, supt P
a|Ĥ(t)−H(t)| = op(1).

(d) For any 0 ≤ a < 1/2, supt |P a(β̂(t)− β0)| = op(1).

Lemma A.2 Under Assumptions 1-5,

(a) P−1/2
∑T

t=R(
∂ft+τ

∂β
− Ft+τ )BH(t) = op(1).

(b) P−1/2
∑T

t=R Ft+τ (B(t)−B)H(t) = op(1).

(c) P−1/2
∑T

t=R(
∂ft+τ

∂β
− Ft+τ )(B(t)−B)H(t) = op(1).

(d) S̃µ
P = P−1/2

∑T
t=R(ft+τ − Eft+τ ) + Ft+τBH(t)) + op(1).

Lemma A.3 Define Ẑt ≡ (f̂t − f̄ , ĥt)
′, with f̂t ≡ f(β̂T ), f̄ ≡ P−1

∑T
t=R f̂t, and ĥt ≡ h(β̂T ).

Then, under Assumptions 1-7, and if H0 is true,

1

P

T∑
t=R

T∑
s=R

ẐtẐ
′
sK((t− s)/bP )− ΩZ

p−→ 0,

where

ΩZ ≡

 V ar(P−1/2
∑T

t=R ft) Cov(P−1/2
∑T

t=R ft, P
−1/2

∑T
s=R hs)

Cov(P−1/2
∑T

t=R ft, P
−1/2

∑T
s=R hs) V ar(P−1/2

∑T
t=R ht)

 .

Proof of Lemma A.1. The proof of this result follows the same arguments as that of

Lemma A.1 in GMY(2025). The main difference is that we now rely on Assumption 4 which

assumes that the total number of revisions rmax is finite, where rmax = r + rb − 1 = r only

when there are no annual revisions, i.e. rb − 1 = 0.
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Proof of Lemma A.2. We adapt the proof of Lemma A4 in West (1996) to allow

for periodic stationarity. The crucial insight is that we can write
∑T

t=R as a double sum∑λ−1
j=0

∑N−1
n=0 , where we assume for simplicity that P = Nλ. Since λ <∞, we can then apply

the arguments in West (1996) to each summand indexed by j by relying on our new set of

assumptions, in particular Assumption 3.

Part (a). Define Dt ≡ ∂ft+τ/∂β − Ft+τ , where Ft+τ ≡ E(∂ft+τ/∂β). For j = 0, 1, . . . , λ,

let f
(j+1)
t+τ denote the jth version of ft+τ and define D

(j+1)
t =

∂f
(j+1)
t+τ

∂β
− F (j+1), where F (j+1) ≡

E(∂f
(j+1)
t+τ /∂β). Note that under Assumption 3, F (j+1) does not depend on t. Using the

definition of H(t) ≡ t−1
∑t

s=1+τ+r̈ hs, we can write

P−1/2

T∑
t=R

Dt+τBH(t) = P−1/2

T∑
t=R

(Dt+τBt
−1(h1+τ+r̈ + . . .+ ht))

=
λ−1∑
j=0

P−1/2

N−1∑
n=0

(R + nλ+ j)−1DR+τ+nλ+j(hR+nλ+j + . . .+ h1+τ+r̈)

≡
λ−1∑
j=0

A(j+1).

We can show that for each j = 0, . . . , λ − 1 with λ < ∞, A(j+1) = op(1) by Chebyshev’s

inequality. For instance, consider j = 0. It suffices to show that (i) EA(1) → 0 and (ii)

V ar(A(1)) → 0. To show (i), let γ
(1)
i ≡ ED

(1)
t Bht−i = ED

(1)
t ht−i, where we redefine Bht as

ht. With this notation, we can write

EA(1) = P−1/2

N−1∑
n=0

(R + nλ)−1(γ(1)τ + γ
(1)
τ+1 + . . .+ γ

(1)
R+nλ−1−r̈)

≤ P−1/2

N−1∑
n=0

(R + nλ)−1

∞∑
i=τ

|γ(1)i |

≤ P−1/2

N−1∑
n=0

λ−1∑
j=0

(R + nλ+ j)−1

∞∑
i=0

|γ(1)i |,

where P−1/2
∑N−1

n=0

∑λ−1
j=0 (R+nλ+j)−1 = P−1/2

∑T
t=R t

−1 which converges to zero by Lemma

A1(a) in West (1996), and
∑∞

i=0 |γ
(1)
i | <∞ by Lemma A2 in West (1996). Note in particular

the use of the stationarity and mixing assumptions on
∂f

(j+1)
t+τ

∂β
for j = 0 implied by Assumption

3. The proof of (ii) follows similarly as in West (1996) using Assumption 3(a) which bounds

the fourth moments of (D
(1)
t , ht)

′.
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Part (b). Note that

P−1/2

T∑
t=R

Ft+τ (B(t)−B)H(t) ≤ sup
t

|B(t)−B|P−1/2

T∑
t=R

|Ft+τH(t)|

≤ sup
t

|B(t)−B| sup
1≤j≤λ

|F (j)|P−1/2

T∑
t=R

|H(t)|

where supt |B(t) − B| = op(1) by Assumption 2, sup1≤j≤λ |F (j)| = O(1) by Assumption 3

and λ <∞, and P−1/2
∑T

t=R |H(t)| = Op(1) by the proof of Lemma A4 (c) in West (1996).

Part (c). First, write

P−1/2

T∑
t=R

(
∂ft+τ

∂β
− Ft+τ )(B(t)−B)H(t) ≤ sup

t
|B(t)−B|P−1/2

T∑
t=R

|(∂ft+τ

∂β
− Ft+τ )H(t)|,

where supt |B(t) − B| = op(1) by Assumption 2. The result follows if P−1/2
∑T

t=R |(∂ft+τ

∂β
−

Ft+τ )H(t)| = Op(1). Using the periodicity assumption on ft (see equation (1) in the main

text), we can write

P−1/2

T∑
t=R

∣∣∣(∂ft+τ

∂β
− Ft+τ )H(t)

∣∣∣ = P−1/2

N−1∑
n=0

λ−1∑
j=0

∣∣∣(∂f (j+1)
R+τ+nλ+j

∂β
− F (j+1))H(R + nλ+ j)

∣∣∣
≤

λ−1∑
j=0

P−1/2

T∑
t=R

∣∣∣(∂f (j+1)
t+τ

∂β
− F (j+1))H(t)

∣∣∣,
where λ < ∞, and P−1/2

∑T
t=R

∣∣∣(∂f (j+1)
t+τ

∂β
− F (j+1))H(t)

∣∣∣ = Op(1) by logic such as that in the

proof of Lemma A4 (b) in West (1996), applied here to each j = 0, 1, . . . , λ.

Part (d). Applying a second-order mean value expansion of ft+τ (β̂t) around β0,

S̃µ
P = P−1/2

T∑
t=R

(ft+τ − Eft+τ ) + ξ1 + ξ2,

with ξ1 = P−1/2
∑T

t=R
∂ft+τ

∂β
(β̂t − β0) and ξ2 = 0.5P−1/2

∑T
t=R

∂2

∂β2ft+τ (β̃t)(β̂t − β0)
2, where

β̃t lies between β̂t and β0. The result follows if ξ1 = P−1/2
∑T

t=R Ft+τBH(t) + op(1) and

ξ2 = op(1). To show ξ2 = op(1), note that

|ξ2| ≤ 0.5(sup
t

∣∣P 1/4(β̂t − β0)
∣∣)2P−1

T∑
t=R

∣∣ ∂2
∂β2

ft+τ (β̃t)
∣∣,

where supt |P 1/4(β̂t−β0)| = op(1) by Lemma A3 (b) in West (1996). The result follows since

we can show that P−1
∑T

t=R | ∂2

∂β2ft+τ (β̃t)| = Op(1), as we argue next. Using equation (1) in

the main text, we can write

P−1

T∑
t=R

| ∂
2

∂β2
ft+τ (β̃t)| = P−1

λ−1∑
j=0

N−1∑
n=0

| ∂
2

∂β2
f
(j+1)
R+τ+nλ+j(β̃R+nλ+j)|.
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By Assumption 1, and the fact that β̃t
p−→ β0, for j = 0, . . . , λ−1, we can bound | ∂2

∂β2f
(j+1)
t+τ (β̃t)|

by supβ∈Z | ∂2

∂β2f
(j+1)
t+τ | < mt+τ . The result follows by Markov’s inequality since Emt+τ < D <

∞ for all j = 0, 1, . . . , λ. For ξ1, adding and subtracting appropriately yields

ξ1 = P−1/2

T∑
t=R

∂ft+τ

∂β
(β̂t − β0) =

4∑
i=1

ξ1.i

where

ξ1.1 = P−1/2

T∑
t=R

Ft+τBH(t), ξ1.2 = P−1/2

T∑
t=R

(
∂ft+τ

∂β
− Ft+τ )BH(t)

ξ1.3 = P−1/2

T∑
t=R

Ft+τ (B(t)−B)H(t), and ξ1.4 = P−1/2

T∑
t=R

(
∂ft+τ

∂β
− Ft+τ )(B(t)−B)H(t)

The result follows by parts (a), (b) and (c) since ξ1.i = op(1) for i = 2, 3, 4, respectively.

Proof of Lemma A.3. Let

Ω̃Z = P−1

T∑
t=R

T∑
s=R

Z̃tZ̃
′
sK((s− t)/bP ) and Ω̂Z = P−1

T∑
t=R

T∑
s=R

ẐtẐ
′
sK((s− t)/bP ),

where Z̃t = (f̂t, ĥt)
′ ≡ (ft(β̂T ), ht(β̂T ))

′ and Ẑt = (f̂t − f̄ , ĥt)
′, with f̄ = P−1

∑T
t=R f̂t. Note

that Z̃t differs from Ẑt because of the demeaning of f̂t. The proof contains two steps:

(i) show that Ω̃Z − ΩZ →p 0; (ii) show that Ω̂Z − Ω̃Z →p 0. Starting with (i), define

Xt(β̂T ) ≡ P−1/2Z̃t and Xt(β0) ≡ P−1/2Zt(β0) where Zt(β0) ≡ (ft, ht)
′. We next show that

Xt ≡ Xt(β0) satisfies Assumptions 1-4 of Theorem 2.2 of de Jong and Davidson (2000), which

implies (i). First, note that Xt has mean zero by Assumption 2, which implies Ehs = 0,

and by imposing H0 since then Eft = 0. Second, note that their Assumption 1 is verified by

our Assumption 7. Next, we can show that their Assumption 2 holds for Xt. In particular,

we can show that Xt is L2-NED (near epoch dependent) on a mixing process such that

the regularity conditions in de Jong and Davidson’s (2000) Assumption 2 are verified. To

see this, let Vt = (f
(1)
t , f

(2)
t , . . . , f

(λ)
t , ht)

′. Under our Assumption 3, Vt is a strong mixing

(covariance stationary) process of size −ψ = −3d/(d − 1), where d > 1. Letting r = 1 + ϵ

for small enough ϵ > 0 implies that −ψ = −3(1 + ϵ)/ϵ, which is larger in absolute value

than −(2 + ϵ)/ϵ, the size condition imposed by Assumption 2 in de Jong and Davidson

(2000). Hence, Vt is a strong mixing process satisfying the size conditions imposed on

the array Vnt defined in Jong and Davidson (2000). Recall that Xt is said to be L2-NED

on Vt if or m ≥ 0, ∥Xt − E(Xt|Vt−m, . . . ,Vt+m∥2 ≤ dtv(m), where dt is a nonstochastic

sequence and v(m) → 0 as m→ ∞. Since Xt is measurable with respect to Vt−m, . . . ,Vt+m,

E(Xt|Vt−m, . . . ,Vt+m) = 0 for any m, implying that Xt is automatically NED on the mixing

32



process Vt. We can set the constant dt that appears in Assumption 2 of de Jong and Davidson

(2000) to any arbitrary value, including dt = P−1/2. Similarly, we can take ct = P−1/2 since

∥Xt/ct∥2 is uniformly bounded under Assumption 3. This implies that conditions (2.6) and

(2.7) of de Jong and Davidson (2000) are verified in our context. Assumption 3 of de Jong

and Davidson (2000) follows if bP → ∞ such that P−1bP → 0 given that ct = P−1/2. This

condition is ensured by our rate condition in Assumption 7. Finally, we verify Assumption 4

of de Jong and Davidson (2000). Part (a) requires
√
T (β̂T −β0) = Op(1), which follows under

our Assumptions 2 and 3. Part (b) requires that P−1/2
∑T

t=RE(∂Xt(β)/∂β) is continuous

at β0 uniformly in P . Since Xt(β) = P−1/2(ft(β), ht(β))
′ with ht(β) = xt−τ (yt − xt−τβ),

it follows that ∂Xt(β)/∂β = (∂ft(β)/∂β,−x2t−τ )
′ when β is a scalar. Hence, condition (b)

holds in our context if P−1
∑T

t=RE(∂ft(β)/∂β) is continuous at β0 uniformly in P . Given

the periodic stationarity of ∂ft(β)/∂β, this condition holds if λ−1
∑λ

j=1E(∂f
(j)
t (β)/∂β) is

continuous at β0. This follows from the twice continuity assumption on f
(j)
t (β) imposed by

Assumption 1(a) and the dominance condition of Assumption 1(b). To end the proof, we

verify equations (2.8) and (2.10) in Assumption 4 of de Jong and Davidson (2000). Starting

with (2.8), note that in our context this condition is

lim
R,P→∞

sup
R≤T

T∑
t=R

E sup
β∈N

∥∂Xt(β)/∂β∥2

lim
R,P→∞

sup
R≤T

1

P

T∑
t=R

E sup
β∈N

((∂ft(β)/∂β)
2 + x4t−τ )

≤ lim
R,P→∞

sup
R≤T

1

P

T∑
t=R

E sup
β∈N

(∂ft(β)/∂β)
2 + lim

R,P→∞
sup
R≤T

1

P

T∑
t=R

E(x4t ) <∞,

since for t = R, . . . , T , E(x4t ) <∞ by Assumption 4 and we assume thatE supβ∈N (∂ft/∂β)
2 <

∞. Finally, equation (2.10) holds by letting P−1/2bP → 0 as in Assumption 7(b), and ap-

plying Markov’s inequality to bound

sup
β∈N

|
T∑

t=R

∂X ′
t(β)/∂β · ∂Xt(β)/∂β| ≤

1

P

T∑
t=R

sup
β∈N

(∂ft(β)/∂β)
2 +

1

P

T∑
t=R

x4t = Op(1).

To prove step (ii), note that Ω̂Z − Ω̃Z is a matrix whose elements are all zero except for the

element (1,1) which equals −f̄P−1
∑T

s,t=R(f̂t+f̂s)K((s−t)/bP )+f̄ 2P−1
∑T

s,t=RK((s−t)/bP ).
Since P−1

∑T
s,t=RK((s− t)/bP ) = O(bP ) and f̄ = Op(P

−1/2) (when E(ft) = 0), the last term

is of order Op(bP/P ) = op(1) under our assumptions on the bandwidth. A similar argument

applies to the first term, which implies that Ω̂Z − Ω̃Z = op(1).
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A.2 Proofs of asymptotic results in the paper

Proof of Lemma 5.1. By two mean value expansions of ft+τ (β̂t) and ft+τ (β̂(t)) around

β0, respectively, we can write Ŝµ
P − S̃µ

P = P−1/2
∑T

t=R Ft+τ (β̂(t) − β̂t) + op(1). The result

then follows by showing that P−1/2
∑T

t=R Ft+τ (β̂(t) − β̂t) = op(1). In particular, using the

definitions of β̂t and β̂(t), we can write

P−1/2

T∑
t=R

Ft+τ (β̂(t)− β̂t) =
3∑

i=1

Ci,

where C1 = P−1/2
∑T

t=R Ft+τ (B̂(t) − B(t))H(t), C2 = P−1/2
∑T

t=R Ft+τB(t)(Ĥ(t) − H(t)),

and C3 = P−1/2
∑T

t=R Ft+τ (B̂(t) − B(t))(Ĥ(t) − H(t)). The result follows by showing that

Ci = op(1) for i = 1, 2, 3, which follows from Lemma A.1 and standard inequalities under our

assumptions.

Proof of Lemma 5.2. Using Lemma A.2 (d), and adding and subtracting appropriately,

S̃µ
P = P−1/2

T∑
t=R

(ft+τ − Eft+τ ) + F̄BP−1/2

T∑
t=R

H(t) + SD + op(1),

where SD ≡ P−1/2
∑T

t=R(Ft+τ − F̄ )BH(t). We complete the proof by showing that SD =

op(1) under our assumptions. Note that under covariance stationarity of ft+τ and ∂ft+τ/∂β
′,

SD = 0 because Ft+τ = F = F̄ , but this is not necessarily true under our new set of

assumptions. As it turns out, the special periodic structure of Ft+τ (according to which it

can take up to λ different values, where λ <∞) is crucial in showing that SD = op(1). More

specifically, using the definition of H(t) ≡ t−1
∑t

s=1+τ+r̈ hs, we can write

SD ≡ P−1/2

T∑
t=R

(Ft+τ − F̄ )BH(t)

= P−1/2
[
R−1(FR+τ − F̄ )B(

R∑
s=1+τ+r̈

hs) + (R + 1)−1(FR+1+τ − F̄ )B
(
(

R∑
s=1+τ+r̈

hs) + hR+1

)
+ . . .

]
= DR,0BP

−1/2

R∑
s=1+τ+r̈

hs + P−1/2

P−1∑
i=1

DR,iBhR+i

≡ SD.1 + SD.2,

where DR,i = (R + i)−1(FR+τ+i − F̄ ) + . . . + T−1(FT+τ − F̄ ). This is similar to West

(1996)’s decomposition of
∑T

t=RH(t) = aR,0[
∑R

s=1+τ+r̈ hs]+aR,1hR+1+ . . .+aR,P−1hT , aR,i =

(R + i)−1 + . . .+ T−1, but our weights DR,i include the factors (FR+τ+i − F̄ ).

Next, we show that both SD.1 and SD.2 vanish asymptotically. For SD.1 = op(1), we only

need to show that DR,0 = o(1) since BP−1/2
∑R

s=1+τ+r̈ hs = Op(1) by the strong mixing
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assumption on ht of Assumption 3. To show that DR,0 = o(1) we use the periodicity of Ft+τ .

Specifically, we can write

DR,0 =
T∑

t=R

t−1(Ft+τ−F̄ ) =
N−1∑
n=0

λ−1∑
j=0

(R+nλ+j)−1(FR+τ+nλ+j−F̄ ) =
λ−1∑
j=0

(F (j+1)−F̄ )
N−1∑
n=0

(R+nλ+j)−1.

Note that
∑λ−1

j=0 (F
(j+1) − F̄ ) = 0 by definition of F̄ , hence DR,0 → 0 if we can show that

for each fixed j,
∑N−1

n=0 (R+ nλ+ j)−1 converges to a constant that is independent of j. For

simplicity, we let aj =
R+j
λ

and note that aj is proportional to R → ∞ for fixed j and fixed

λ. Then for each j = 0, . . . , λ− 1, we can write

N−1∑
n=0

1

R + nλ+ j
=

1

λ

N−1∑
n=0

1

aj + n
.

We can show that the limit of λ−1
∑N−1

n=0 (aj+n)
−1 is λ−1 ln(1+π) (the argument is analogous

to West’s derivation of the limit of aR,0 =
∑T

t=R t
−1 =

∑P−1
n=0 (R + n)−1, which is ln(1 + π),

as he shows in p. 1082). In particular, for each j,

1

λ

∫ N−1

0

1

aj + z
dz ≤ 1

λ

N−1∑
n=0

1

aj + n
≤ 1

λ

∫ N−1

−1

1

aj + z
dz

⇒ 1

λ
ln
(aj +N − 1

aj

)
≤ 1

λ

N−1∑
i=0

1

aj + n
≤ 1

λ
ln
(aj +N − 1

aj − 1

)
⇒ 1

λ
ln
(
1 +

N

aj
− 1

aj

)
≤ 1

λ

N−1∑
n=0

1

aj + n
≤ 1

λ
ln
(
1 +

N

aj − 1

)
,

where for fixed j, N
aj

= Nλ
R+j

= P
R+j

= (R
P
+ j

P
)−1 → π, 1

aj
= λ

R+j
→ 0, N

aj−1
→ π, and

π = limP/R. Hence, 1
λ

∑N−1
n=0

1
aj+n

→ 1
λ
ln(1 + π). By Assumption 5, 0 ≤ π < ∞, implying

that 0 ≤ ln(1 + π) <∞, independently of j. Hence,

lim
R,P→∞

DR,0 = ln(1 + π)λ−1

λ−1∑
j=0

(F (j+1) − F̄ ) = 0,

since λ−1 ln(1 + π) is a constant and λ−1
∑λ−1

j=0 (F
(j+1) − F̄ ) = 0.

For SD.2 ≡ P−1/2
∑P−1

i=1 DR,iBhR+i = op(1), we use Chebyshev’s inequality. By As-

sumption 2, EhR+i = 0, which implies that ESD.2 = 0. Hence, it suffices to show that

V ar(SD.2) → 0. Let

dj = DR,1DR,j+1 + . . .+DR,P−j−1DR,P−1 for 0 ≤ j ≤ P − 2.

For −P + 2 ≤ j < 0, dj ≡ d−j. Using the same logic as in the proof of equation (A-1b) of

West (1996), we can write

V ar(SD.2) = P−1

P−2∑
j=−P+2

djγj ≤ P−1

P−2∑
j=−P+2

|dj||γj|
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where γj = Cov(Bht, Bht+j) = Cov(Bht, Bht−j). Note that for any 0 ≤ j ≤ P − 2,

|dj| ≤ max
0≤j≤P−2

|dj| ≤ max
0≤j≤P−2

{|DR,1||DR,j+1|+ . . .+ |DR,P−j−1||DR,P−1|} ≤ P ( max
0≤j≤P−1

|DR,j|)2.

Then

V ar(SD.2) ≤ ( max
0≤j≤P−1

|DR,j|)2
P−2∑

j=−P+2

|γj|

where
∑∞

j=−∞ |γj| <∞. Hence limV ar(SD.2) = o(1) if max0≤j≤P−1 |DR,j| → 0. Because for

0 ≤ j ≤ P−1, DR,j is deterministic, we can find j = m such that |DR,m| = max0≤j≤P−1 |DR,j|.
Using the triangle inequality, we can write

|DR,m| ≤ |DR,0|+ |DR,0 −DR,m|.

Hence, for 0 ≤ m ≤ P − 1, |DR,m| → 0 if the RHS of the above inequality goes to zero.

When m = 0, |DR,0| = o(1) as shown above. When 1 ≤ m ≤ λ,

|DR,0 −DR,m| =
∣∣∣ R+m−1∑

t=R

t−1(Ft+τ − F̄ )
∣∣∣ ≤ R−1

R+m−1∑
t=R

|Ft+τ − F̄ | ≤ O(λ/R) → 0.

When λ < m ≤ P−1, there must exist 1 ≤ Im ≤ N−1 and 0 ≤ Jm ≤ λ−1 s.t. R+m−1 =

R + Imλ + Jm. For example, when m = λ + 1, Im = 1 and Jm = 0; when m = P − 1 then

Im = N − 1, and Jm = λ− 1. Hence, we can write

|DR,0 −DR,m| =
∣∣∣ R+m−1∑

t=R

t−1(Ft+τ − F̄ )
∣∣∣

=
∣∣∣ Im−1∑

n=0

λ−1∑
j=0

(R + nλ+ j)−1(FR+τ+nλ+j − F̄ ) +
Jm∑
j=0

(R + Imλ+ j)−1(FR+τ+Imλ+j − F̄ )
∣∣∣

≤
∣∣∣ Im−1∑

n=0

λ−1∑
j=0

(R + nλ+ j)−1(FR+τ+nλ+j − F̄ )
∣∣∣+ 1

R

Jm∑
j=0

|FR+τ+Imλ+j − F̄ |

where the second term is O(λ/R) → 0, and the first term can be written as

∣∣∣ λ−1∑
j=0

(F (j+1) − F̄ )
Im−1∑
n=0

1

R + nλ+ j

∣∣∣.
Recall that λ is finite and

∑λ
j=0(F

(j+1)−F̄ ) = 0. Then |DR,0−DR,m| = o(1) if
∑Im−1

n=0
1

R+nλ+j
arrowc

where c is a constant that is independent of j. This can be shown using arguments similar

to those used above to show that
∑N−1

n=0 (R + nλ+ j)−1 → ln(1 + π), so we skip the details.
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Proof of Theorem 5.1. The proof follows from the continuous mapping theorem if

 S1P

BS2P

 d−→ N(0, V ) for a full rank matrix V =


Ω1 Ω12B

′

BΩ′
12 BΩ2B

′

 .

This result follows by showing that the vector (S1P , S
′
2PB

′)′ satisfies the regularity conditions

of the central limit theorem for near-epoch dependent functions of the heterogeneous mixing

process in de Jong (1997). In particular, we use the periodic structure of ft to rewrite S1P

as

S1P = N−1/2

N−1∑
n=0

(λ−1/2

λ−1∑
j=0

(f
(j+1)
R+τ+nλ+j − Ef

(j+1)
R+τ+nλ+j)) ≡ N−1/2

N−1∑
n=0

(Zn − EZn),

where Zn ≡ λ−1/2
∑λ−1

j=0 f
(j+1)
R+τ+nλ+j is the scaled average of the λ versions of ft+τ . Since we

assume that (f
(1)
t , f

(2)
t , . . . , f

(λ)
t ) is covariance stationary and strong mixing, it follows that

for finite λ, Zn −EZn is strong mixing (hence, near-epoch dependent on a mixing process),

and covariance stationary.

Proof of Lemma 5.3. Letting
∑T

t=RH(t) = aR,0[
∑R

s=1+τ+r̈ hs] +
∑P−1

i=1 aR,ihR+i, where

aR,i = (R + i)−1 + . . .+ T−1, we can write S2P ≡ P−1/2
∑T

t=RH(t) = S2P.1 + S2P.2, where

S2P.1 ≡ P−1/2

R∑
s=1+τ+r̈

aR,0hs and S2P.2 ≡ P−1/2

P−1∑
i=1

aR,ihR+i

It follows that

Ω12 ≡ lim
R,P→∞

Cov(S1P , S2P ) = lim
R,P→∞

Cov(S1P , S2P.1) + lim
R,P→∞

Cov(S1P , S2P.2).

We can show that limR,P→∞Cov(S1P , S2P.1) = 0. To see this, let T − R + 1 = P = Nλ.

Then we can write

Cov(P−1/2

T∑
t=R

ft, P
−1/2

R∑
s=1+τ+r̈

aR,0hs) =
aR,0

P

λ−1∑
i=0

N−1∑
n=0

Cov(f
(i+1)
R+nλ+i,

R∑
s=1+τ+r̈

hs).

For i = 0, . . . , λ − 1, let γ
(i+1)
j ≡ Cov(f

(i+1)
t , ht+j) = Cov(f

(i+1)
t+j , ht) ≡ γ

(i+1)
−j . Then we can

bound
∑N−1

n=0 Cov(f
(i+1)
R+nλ+i,

∑R
s=1+τ+r̈ hs) by

∑λ−1
i=0 (|γ

(i+1)
0 |+

∑∞
j=−∞ |j||γ(i+1)

j |) <∞ for each

i and the result follows since
aR,0

P
≤ 1

R
→ 0.

Next, we derive limR,P→∞Cov(S1P , S2P.2). For simplificity, write cR ≡ aR,0 and for

t = R + 1, . . . , T , let ct = (1/t+ . . .+ 1/T ) ≡ aR,i for i = 1, . . . , P − 1. With this notation,
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we have that

Cov(S1P , S2P.2) = Cov(P−1/2

T∑
t=R

ft+τ , P
−1/2

T∑
s=R+1

cshs)

= P−1

T∑
t=R

T∑
s=R+1

E(zt+τcshs), zt+τ ≡ ft+τ − Eft+τ

= P−1

T∑
t=R

T∑
s=R

E(ztcshs) +R1 +R2,

where R1 ≡ −cR/P
∑T

t=RE(zthR) and

R2 ≡ P−1

T∑
s=R

cs{−E[hs(fR + . . .+ fR+τ−1) + E[hs(fT+1 + . . .+ fT+τ )]}.

Under Assumption 6, only a finite number M of the expectations E(zthR) is non zero. Since

cR = (1/R + . . . + 1/T ) = O(1), we obtain that R1 = O(P−1) = o(1). A similar argument

implies that R2 = O(P−1) = o(1) since τ is finite and cs ≤ (T − s + 1)/R ≤ P/R = O(1)

for all s = R, . . . , T . Hence,

Ω12 = lim
R,P→∞

Ω̄12, Ω̄12 ≡ P−1

T∑
t=R

T∑
s=R

csE(zths).

We can write

Ω̄12 =
1

P

T∑
t=R

ctE(ztht) +
1

P

P−1∑
j=1

T−j∑
t=R

ctE(zt+jht) +
1

P

P−1∑
j=1

T∑
t=R+j

ctE(zt−jht)

=
1

P

T∑
t=R

ctE(ztht) +
1

P

M∑
j=1

T−j∑
t=R

ctE(zt+jht) +
1

P

M∑
j=1

T∑
t=R+j

ctE(zt−jht),

where we have used Assumption 6 to zero out the covariances with j > M in obtaining the

second equality. Adding and subtracting appropriately, it follows that

Ω̄12 =
1

P

T∑
t=R

ctE(ztht) +
M∑
j=1

1

P

T∑
t=R

ctE(zt+jht) +
M∑
j=1

1

P

T∑
t=R

ctE(zt−jht) +D1 +D2

where we can show that the remainder terms D1 and D2 are of order O(M2/P ) = o(1). In

particular,

D1 = −P−1

M∑
j=1

T∑
t=T−j+1

ctE(zt+jht) = O(P−1) and D2 = P−1

M∑
j=1

R+j−1∑
t=R

ctE(zt−jht) = O(P−1),
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under the assumption that M is finite. Using this result and the fact that P = Nλ, we can

write the first three terms in Ω̄12 as

M∑
j=−M

1

P

T∑
t=R

ctE(zt+jht) =
M∑

j=−M

1

P

N−1∑
n=0

λ−1∑
i=0

cR+nλ+iE(zR+j+nλ+ihR+nλ+i)

=
M∑

j=−M

1

Nλ

N−1∑
n=0

λ−1∑
i=0

cR+nλ+iE(zR+j+ihR+i)

=
M∑

j=−M

1

λ

λ−1∑
i=0

E(zR+j+ihR+i)
( 1

N

N−1∑
n=0

cR+nλ+i

)
,

where the second equality follows because E(zR+j+nλ+ihR+nλ+i) = E(zR+j+ihR+i) since zt ≡
ft − Eft is periodically stationary with periodicity λ. For this reason, and because M and

λ are finite, we have that

Ω12 = lim
R,P→∞

Ω̄12 =
M∑

j=−M

1

λ

λ−1∑
i=0

E(zR+j+ihR+i)
(

lim
R,P→∞

1

N

N−1∑
n=0

cR+nλ+i

)
.

For i = 0, . . . , λ− 1, let γ
(i+1)
j = E(z

(i+1)
t+j ht) and γ̄j =

1
λ

∑λ−1
i=0 γ

(i+1)
j . It follows that

Ω12 =
(

lim
R,P→∞

1

N

N−1∑
n=0

cR+nλ+λ−1

) M∑
j=−M

γ̄j.

Note that under Assumption 6,

M∑
j=−M

γ̄j = lim
R,P→∞

Cov(P−1/2

T∑
t=R

ft, P
−1/2

T∑
s=R

hs),

so the result follows by showing that we can approximate 1
N

∑N−1
n=0 cR+λ−1+nλ by Π ≡ 1 −

π−1 ln(1 + π). This can be proven using logic such as that in the proof of (A-1a) of West

(1996). We first show for any n ∈ {0, . . . , N − 1}, cR+λ−1+nλ can be approximated by

ln
(

T
R+λ−1+nλ

)
and then use this result to approximate 1

N

∑N−1
n=0 cR+λ−1+nλ. More specifically,

given the definition of cR+λ−1+nλ, we can write cR+λ−1+nλ =
∑T

k=R+λ−1+nλ
1
k
, where 1

k
is a

positive decreasing function in k. Then for any given n ∈ {0, . . . , N − 1}, we have∫ T

R+λ−1+nλ

x−1dx ≤
T∑

k=R+λ−1+nλ

1

k
≤
∫ T

R+λ−2+nλ

x−1dx,

where the integral on the left hand side equals ln
(

T
R+λ−1+nλ

)
and the integral on the right

hand side equals ln
(

T
R+λ−1+nλ+1

)
. Note that these two values are equal in the limit. This

allows us to substitute cR+λ−1+nλ by ln
(

T
R+λ−1+nλ

)
in the limit. We can then approximate
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1
N

∑N−1
n=0 cR+λ−1+nλ by N−1

∫ N−1

−1
ln
(

T
R+λ−1+nλ

)
dn, whose limit as R,P → ∞ can be shown

to be 1− π−1 ln(1 + π).

Proof of Theorem 5.2. It suffices to show that Ω̂1
p−→ Ω1, Ω̂2

p−→ Ω2, Ω̂12
p−→ Ω12, B̂

p−→ B,

and ˆ̄F
p−→ F̄ . By Assumption 2, B̂

p−→ B. For ˆ̄F , we use the periodic structure of ft and write

ˆ̄F =
1

P

T∑
t=R

∂ft+τ (β̂T )/∂β
′ =

1

λ

λ−1∑
j=0

1

N

N−1∑
n=0

∂f
(j+1)
R+τ+nλ+j(β̂T )/∂β

′,

where for j = 0, . . . , λ− 1 <∞,

1

N

N−1∑
n=0

∂f
(j+1)
R+τ+nλ+j(β̂T )/∂β

′ p−→ E∂f
(j+1)
R+τ+nλ+j/∂β

′ ≡ F (j+1)

by Theorem 3 in Clark and McCracken (2009). Hence, ˆ̄F
p−→ F̄ . The consistency of Ω̂1, Ω̂2,

and Ω̂12 follows from Lemma A.3 given Assumptions 1-7 and the fact that H0 implies that

Eft = 0 for all t. Note in particular the use of Lemma 5.3 in justifying the form Ω12 under

Assumption 6.

B Appendix: Bootstrap Theory

As usual in the bootstrap literature, we use P ∗ to denote the bootstrap probability mea-

sure, conditional on the original sample (defined on a given probability space (Ω,F , P )).
For any bootstrap statistic t∗T , we write t∗T = o∗p (1), or t

∗
T →P ∗

0, when for any δ > 0,

P ∗ (|t∗T | > δ) = op (1). We write t∗T = O∗
p (1), when for all δ > 0 there exists Mδ < ∞ such

that limT→∞ P [P ∗ (|t∗T | > Mδ) > δ] = 0. By Markov’s inequality, this follows if E∗ |t∗T |
q =

Op (1) for some q > 0. Finally, we write t∗T →d∗ D, in probability, if conditional on a sample

with probability that converges to one, t∗T weakly converges to the distribution D under P ∗,

i.e. E∗ (f (t∗T )) →p E (f (D)) for all bounded and uniformly continuous functions f .

B.1 Auxiliary lemmas

In the following, recall that f ∗
t+τ ≡ f(y∗t+τ |r′ , x

∗
t (t), β0) and define f ∗

t+τ,β ≡ ∂
∂β
f ∗
t+τ (β0). Simi-

larly, letH∗(t) ≡ t−1
∑t

s=1+τ+r̈ h
∗
s, where h

∗
s ≡ x∗s−τ (y

∗
s−x∗′s−τβ0), andB

∗(t) ≡
(
t−1
∑t

s=1+τ+r̈ x
∗
s−τx

∗′
s−τ

)−1
.

Lemma B.1 Under Assumptions 1-5 and assuming that ℓ→ ∞ such that ℓ/min{
√
R,

√
P} →

0,

(a) For any 0 ≤ a < 1/2, supt |P a(β̂∗
t − β0)| = o∗p(1).

(b) P−1/2
∑T

t=R F̄ (B
∗(t)−B)H∗(t) = o∗p(1).
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(c) P−1/2
∑T

t=R(f
∗
t+τ,β − F̄ )(B∗(t)−B)H∗(t) = o∗p(1).

(d) P−1/2
∑T

t=R(f
∗
t+τ,β − F̄ )BH∗(t) = o∗p(1).

Proof of Lemma B.1. The proofs of parts (a) and (b) are identical to the proofs of

Lemma A.2 (c) and (e) in GMY(2025), respectively, with the only difference that F there is

replaced by F̄ here. These results depend only on the final data on xs−τ and hs which are

assumed to be stationary and strong mixing as in GMY(2025). Parts (c) and (d) depend

on f ∗
t+τ,β, the bootstrap version of ft+τ,β, which we now assume to be periodically stationary

rather than covariance stationary. Nevertheless, we can adapt the proof of Lemma A.2(e)

and (f) in GMY(2025) to our context. For instance, the proof of part (c) follows exactly

as in the proof of GMY(2025)’s Lemma A.2 (e) by replacing F with F̄ and applying their

Lemma A.3 (which does not depend on assuming covariance stationarity). Similarly, part (f)

follows by applying the same arguments as used in GMY(2025) to prove their Lemma A.2

(d), replacing in particular F with F̄ to account for the differences implied by the periodic

heterogeneity of ft+τ . Since the arguments are very similar, we omit the details here.

The following result is the analogue of Lemma A.4 in GMY(2025), adapted to our

annual revisions context. Recall that S∗
1P = P−1/2

∑T
t=R(f

∗
t+τ − ft+τ ). Similarly, S∗

2P =

aR,0P
−1/2

∑R
s=1+τ+r̈(h

∗
s − h̄R) + P−1/2

∑P−1
i=1 aR,i(h

∗
R+i − h̄P ) ≡ S∗

2P.1 + S∗
2P.2.

Lemma B.2 Let Assumptions 1-6 hold. Then, if ℓ → ∞ such that ℓ/min{
√
R,

√
P} → 0,

under H0, (a) V ar
∗(S∗

1P )
p−→ Ω1; (b) V ar

∗(S∗
2P )

p−→ Ω2; and (c) Cov∗(S∗
1P , S

∗
2P )

p−→ Ω12.

Proof of Lemma B.2. Part (a) follows from Theorem 3.1 in Fitzenberger (1998) or

Theorem 2.2 in Gonçalves andWhite (2002). Both of these results show the consistency of the

MBB variance of a sample mean allowing for heterogeneity but imposing a restriction on the

mean heterogeneity. In our application, this restriction is satisfied under the null hypothesis

H0 : E(ft+τ ) = 0. Part (b) follows from Lemma A.4 (b) in GMY(2025) without modification

since we maintain the same assumptions on hs as theirs. Similarly, the proof of part (c)

follows closely the proof of Lemma A.4 (c) in GMY(2025) with some minor modifications

due to the heterogeneity of ft+τ . More specifically, by the independence between S∗
1P and

S∗
2P.1, Cov

∗(S∗
1P , S

∗
2P ) = Cov∗(S∗

1P , S
∗
2P.2). Let k2 = P/ℓ and define cR+i ≡ aR,i, where

aR,i ≡ 1/(R + i) + . . . + 1/T for i = 1, . . . , P − 1 as in Appendix A, setting cR+i = 0 when
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i > P − 1. Similarly, let bi = R + 1 + iℓ. Then, we can show that

Cov∗(S∗
1P , S

∗
2P.2) =P

−1

ℓ−1∑
m=1

(

k2−1∑
i=0

ℓ−1−m∑
j=0

cbi+j+m)P
−1

T+1∑
s=R+1

Cov(fs, hs+m)

+ P−1(

k2−1∑
i=0

ℓ−1∑
j=0

cbi+j)P
−1

T+1∑
s=R+1

Cov(fs, hs)

+ P−1

ℓ−1∑
m=1

(

k2−1∑
i=0

ℓ−1−m∑
j=0

cbi+j)P
−1

T+1∑
s=R+1

Cov(fs+m, hs) + op(1).

The representation above corresponds toW1.1+W2.1+W3.1 in GMY(2025) with the difference

that here Γfh(m) = E(ftht+m) is not time invariant due to the periodicitiy of ft. We next

use Assumption 6 (i.e., Cov(fs, ht) = 0 for |s − t| > M where M is a positive integer) to

write

Cov∗(S∗
1P , S

∗
2P ) = P−1

M−1∑
m=1

(

k2−1∑
i=0

ℓ−1−m∑
j=0

cbi+j+m)P
−1

T+1∑
s=R+1

Cov(fs, hs+m)

+ P−1(

k2−1∑
i=0

ℓ−1∑
j=0

cbi+j)P
−1

T+1∑
s=R+1

Cov(fs, hs)

+ P−1

M−1∑
m=1

(

k2−1∑
i=0

ℓ−1−m∑
j=0

cbi+j)P
−1

T+1∑
s=R+1

Cov(fs+m, hs) + op(1).

This allows us to show that Cov∗(S∗
1P , S

∗
2P )

p−→ Ω12 using arguments similar to those used in

the proof of Lemma 5.3. For instance,

P−1(

k2−1∑
i=0

ℓ−1∑
j=0

cbi+j)P
−1

T+1∑
s=R+1

Cov(fs, hs) = (P−1

T+1∑
t=R+1

ct)P
−1

T+1∑
s=R+1

Cov(fs, hs),

where P−1
∑T+1

t=R+1 ct → Π ≡ 1 − π−1 ln(1 + π), and using the fact that fs is periodically

stationary with periodicity λ,

P−1

T+1∑
s=R+1

Cov(fs, hs) = N−1

N−1∑
n=0

λ−1

λ−1∑
i=0

Cov(f
(i+1)
R+1+nλ+i, hR+1+nλ+i)

= λ−1

λ−1∑
i=0

Cov(f
(i+1)
R+1+i, hR+1+i) = λ−1

λ−1∑
i=0

γ
(i+1)
0 = γ̄0.

Similarly, consider

A ≡ P−1

M−1∑
m=1

(

k2−1∑
i=0

ℓ−1−m∑
j=0

cbi+j)P
−1

T+1∑
s=R+1

Cov(fs+m, hs).
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Adding and subtracting appropriately, A = A1 +∆1, where

A1 ≡
M−1∑
m=1

(P−1

T+1∑
t=R+1

ct)P
−1

T+1∑
s=R+1

Cov(fs+m, hs),

and

∆1 ≡ P−1

M−1∑
m=1

(

k2−1∑
i=0

ℓ−1−m∑
j=0

cbi+j −
T+1∑

t=R+1

ct)︸ ︷︷ ︸
Dm

P−1

T+1∑
s=R+1

Cov(fs+m, hs).

Note that for finite M ,

lim
R,P→∞

A1 =
M−1∑
m=1

(
lim

R,P→∞
P−1

T+1∑
t=R+1

ct

)(
lim

R,P→∞
P−1

T+1∑
s=R+1

Cov(fs+m, hs)
)
,

where P−1
∑T+1

t=R+1 ct → Π, and limR,P→∞ P−1
∑T+1

s=R+1Cov(fs+m, hs) = γ̄m ≡ 1
λ

∑λ−1
i=0 γ

(i+1)
m .

To show ∆1 → 0, we show

Dm = P−1

k2−1∑
i=0

(
ℓ−1−m∑
j=0

cbi+j −
ℓ−1∑
s=0

cbi+s) → 0

for any m = 1, . . . ,M . Recall that for any i and j, cbi+j ≤ cR = 1
R
+ . . .+ 1

T
. We can write

Dm ≤ P−1k2McR ≤ ℓ−1MPR−1 → 0,

since P/R → π, and M <∞.

B.2 Proofs of Lemma 6.1 and Theorem 6.1 in the main text

Proof of Lemma 6.1. We follow closely the proof of Lemma 5.1 in GMY(2025). As in

that paper, we consider two second-order mean value expansions, one of f ∗
t+τ (β̂

∗
t ) around β0,

and another of ft+τ (β̄t) around β0. The first of these expansions yields

P−1/2

T∑
t=R

f ∗
t+τ (β̂

∗
t ) = P−1/2

T∑
t=R

f ∗
t+τ + ξ∗1 + ξ∗2

where ξ∗1 ≡ P−1/2
∑T

t=R f
∗
t+τ,β(β̂

∗
t − β0), and ξ

∗
2 ≡ 0.5P−1/2

∑T
t=R

∂2

∂β2f
∗
t+τ (β̃

∗
t )(β̂

∗
t − β0)

2, with

β̃∗
t lying between β̂∗

t and β0. We can show that ξ∗2 = o∗p(1) using the same arguments as in

GMY(2025). In particular, we use Lemma B.1(a) to obtain supt |P 1/4(β̂∗
t − β0)| = o∗p(1). To

show that P−1
∑T

t=R | ∂2

∂β2f
∗
t+τ (β̃

∗
t )| = O∗

p(1), we can use Markov’s inequality to obtain

P ∗
(
P−1

T∑
t=R

| ∂
2

∂β2
f ∗
t+τ (β̃

∗
t )| > ∆

)
≤ P ∗

( λ−1∑
j=0

P−1

T∑
t=R

m(j+1)
ηt+τ

> ∆
)
≤ ∆−1

λ−1∑
j=0

P−1

T∑
t=R

E∗(m(j+1)
ηt+τ

) →p 0,
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since for j = 0, . . . , λ−1, P−1
∑T

t=RE
∗(m

(j+1)
ηt+τ ) = Op(1) under Assumption 1. The proof that

ξ∗1 = F̄BP 1−∑T
t=RH

∗(t) + o∗p(1) follows the same arguments as in GMY(2025) by replacing

F with F̄ and using Lemma B.1 (d), (b) and (c) instead of their Lemma A.2 (d), (e), and

(f), respectively. Hence,

P−1/2

T∑
t=R

f ∗
t+τ (β̂

∗
t ) = P−1/2

T∑
t=R

f ∗
t+τ + F̄BP−1/2

T∑
t=R

H∗(t)︸ ︷︷ ︸
≡ξ∗1.1

+o∗p(1).

Similarly, an expansion of ft+τ |r′(β̄t) around β0 yields

P−1/2

T∑
t=R

ft+τ (β̄t) = P−1/2

T∑
t=R

ft+τ + ξ̄1 + ξ̄2,

where

ξ̄1 = P−1/2

T∑
t=R

ft+τ,β(β̄t − β0) and ξ̄2 = 0.5P−1/2

T∑
t=R

∂2

∂β2
ft+τ (β̈t)(β̄t − β0)

2.

where β̈t lies between β̄t and β0, and ft+τ,β ≡ ft+τ,β(β0). We can show that ξ̄2 = op(1) using a

similar argument to that used to show that ξ∗2 = o∗p(1). In particular, it suffices to show that

supt |P 1/4(β̄t − β0)| = op(1) (which follows from Lemma A.2) and P−1
∑T

t=R | ∂2

∂β2ft+τ (β̈t)| =
Op(1), which follows under Assumption 1. For ξ̄1, we can follow the same arguments as

GMY(2025) to show that this term can be represented as ξ̄1 = ξ̄1.1 + ξ̄1.2 + op(1), where

ξ̄1,1 = P−1/2
∑T

t=R Ft+τRt
−1BH(R) and ξ̄1.2 = P−1/2

∑T
t=R Ft+τ (t − R)t−1BH(P ). These

two terms correspond to ξ̄1.1 and ξ̄1.2 defined in the proof of Lemma 5.1 of GMY(2025)

when F = Ft+τ but not otherwise. The proof that the remainder term is op(1) relies on an

application of Lemma A.2, which is the analogue of Lemma A.4 of West (1996) under annual

revisions. Under our new set of assumptions, we can further decompose ξ̄1.1 = ξ̄1.1.1 + op(1),

and ξ̄1.2 = ξ̄1.2.1 + op(1) where

ξ̄1.1.1 = F̄P−1/2

T∑
t=R

Rt−1BH(R), and ξ̄1.2.1 = F̄P−1/2

T∑
t=R

(t−R)t−1BH(P ),

which correspond to ξ̄1,1 and ξ̄1,2 in GMY(2025) with F replaced by F̄ . Combining these

results yields

S̃∗
P ≡ P−1/2

T∑
t=R

(f ∗
t+τ (β̂

∗
t )− ft+τ (β̄t)) = P−1/2

T∑
t=R

(f ∗
t+τ − ft+τ ) + (ξ∗1.1 − ξ̄1.1.1 − ξ̄1.2.1) + op(1),

where S∗
1P = P−1/2

∑T
t=R(f

∗
t+τ − ft+τ ), and we can show that ξ∗1.1 − ξ̄1.1.1 − ξ̄1.2.1 = F̄BS∗

2P

with

S∗
2P = aR,0P

−1/2

R∑
s=1+τ+r̈

(h∗s − h̄R) + P−1/2

P−1∑
i=1

aR,i(h
∗
R+i − h̄P ),
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a result that follows from GMY(2025)’s proof when we replace F by F̄ .

Proof of Theorem 6.1. The proof follows the same steps as the proof of Theorem 5.1 of

GMY(2025), so we omit the details. The main differences are that (i) we rely on Theorem 5.1

to claim that Ω−1/2S̃µ
P →d N(0, 1), and (ii) we use Lemma 6.1 and Theorem 5.2 to show that

S̃∗
P →d∗ N(0,Ω) when the null is true.

C Additional simulation results

The following table contains results for the equal MSE experiment underlying Table 4 in

Section 7, but with P = 320.

Table C.1: Size and power results of equal MSE experiment with P = 320

Tests λ = 1 4 12 λ = 1 4 12

size: DL(1) power: DL(1)

tDM 0.1276 0.1169 0.1118 0.9548 0.9456 0.9219

tCM 0.0454 0.0392 0.0296 0.9284 0.9124 0.8643

BootstrapR 0.0463 0.0386 0.0265 0.9218 0.9034 0.8320

Bootstrap 0.0463 0.0386 0.0265 0.9218 0.9034 0.8320

size: DL(2) power: DL(2)

tDM 0.0509 0.0866 0.0996 1.0000 0.5679 0.8240

tCM 0.0505 0.0455 0.0323 1.0000 0.5064 0.7494

BootstrapR 0.0480 0.3279 0.3555 1.0000 0.8482 0.9642

Bootstrap 0.0480 0.0425 0.0257 1.0000 0.4884 0.7030
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